IP传输方式——组播

组播作为IP传输三种方式之一,指的是报文从一个源发出,被转发到一组特定的接收者,相同的报文在每条链路上最多有一份。相较于传统的单播和广播,组播可以有效地节约网络带宽、降低网络负载,所以被广泛应用于IPTV、实时数据传送和多媒体会议等网络业务中。

组播和单播的区别是什么?

组播和单播都是报文传输的一种方式。

单播是主机间一对一的通讯模式,网络中的设备根据网络报文中包含的目的地址选择传输路径,将单播报文传送到指定的目的地,只对接收到的数据进行转发,不会进行复制。它能够针对每台主机及时的响应,现在的网页浏览全部都是采用单播模式。

组播是主机间一对多的通讯模式, 组播是一种允许一个或多个组播源发送同一报文到多个接收者的技术。组播源将一份报文发送到特定的组播地址,组播地址不同于单播地址,它并不属于特定某个主机,而是属于一组主机。一个组播地址表示一个群组,需要接收组播报文的接收者都加入这个群组。

一份数据报文如图所示,通过单播传输需要使用一个单播地址作为目的地址。数据源向每个接收者发送一份独立的报文。如果网络中存在N个接收者,则数据源需要发送N份报文;通过组播传输时使用一个组播地址作为目的地址,数据源向组播组发送且仅发送一份报文。如果网络中存在N个接收者,数据源也仅需要发送一份数据报文。

图片


组播传输和单播传输方式对比

单播传输适用于用户稀少的网络,如果用户量较大时,网络将会出现多份相同的流量,会大量占用处理器资源而且非常浪费网络的带宽,而通过组播方式传输,网络中每条链路中仅有一条数据流。组播相比于单播的优势在于相同的报文在每条链路上最多有一份。

组播和广播的区别是什么?

组播和广播都是报文传输的一种方式。

广播是主机间一对所有的通讯模式,设备会将报文发送到网络中的所有可能接收者。设备简单地将它收到的任何广播报文都复制并转发到除该报文到达的接口外的每个接口。广播处理流程简单,不用选择路径。

组播是主机间一对多的通讯模式, 组播是一种允许一个或多个组播源发送同一报文到多个接收者的技术。

一份数据报文如图所示,通过广播传输需要使用一个广播地址作为目的地址。数据源向本网段对应的广播地址发送且仅发送一份报文。广播传输会把数据报文发送给本网段中的所有用户,而不管用户是否有需求;通过组播传输时仅把数据报文发送给有数据需求的用户,不会发送给所有用户。

图片


组播传输和广播传输方式对比

广播传输数据源必须与用户在同一个网段,组播可以跨网段传输。广播传输该网段内所有主机都能收到数据报文,会导致无信息需求的主机也收到该信息,网络中存在流量冗余,组播传输只将数据流传输到有接收者的地方,网络中不存在流量冗余。组播相比于广播的优势在于组播的报文是按需发送。

IP组播地址的范围

为了使组播源和组播组成员进行通信,需要提供网络层组播使用的IP组播地址。

IPv4组播地址

IANA将D类地址空间分配给IPv4组播使用。IPv4地址一共32位,D类地址最高4位为1110,地址范围从224.0.0.0到239.255.255.255,具体分类及含义见下图。

图片


IPv4组播地址的范围及含义

IPv6组播地址

IPv6地址长度是128位,IPv6组播地址格式如图所示。

图片


IPv6组播地址格式

  • IPv6组播地址总是以FF开头,高8位取值为11111111。

  • Flags字段(4位)用来标识组播地址的状态。例如取值为0表示保留组地址,取值为1或2表示ASM范围内的组播地址,取值为3表示SSM范围内的组播地址。

  • Scope字段(4位)用来标识组播组的应用范围,指示组播组应用范围是只包含同一本地网络、同一站点、同一机构中的节点,还是包含全球地址空间内的任何节点。

  • Group ID(112位)组播组标识符,用在由Scope字段所指定的范围内标识组播组。

固定的IPv6组播地址的范围及含义如图所示。

图片


IPv6组播地址的范围及含义

组播MAC地址的范围

为了在本地物理网络上实现组播信息的正确传输,需要在链路层使用组播MAC地址。组播数据传输时,其目的地不是一个具体的接收者,而是一个成员不确定的组,所以需要一种技术将IP组播地址映射为组播MAC地址。

IPv4组播MAC地址

以太网传输IPv4单播报文的时候,目的MAC地址使用的是接收者的MAC地址。但是在传输组播数据时,其目的地不再是一个具体的接收者,而是一个成员不确定的组,所以要使用IPv4组播MAC地址,即IPv4组播地址映射到链路层中的地址。

IANA规定,IPv4组播MAC地址的高24位为0x01005e,第25位为0,低23位为IPv4组播地址的低23位,映射关系如图所示。例如组播组地址224.0.1.1对应的组播MAC地址为01-00-5e-00-01-01。

图片


IPv4组播地址与IPv4组播MAC地址的映射关系

IPv4组播地址的前4位是固定的1110,对应组播MAC地址的高25位,后28位中只有23位被映射到MAC地址,因此丢失了5位的地址信息,直接结果是有32个IPv4组播地址映射到同一MAC地址上。例如IP地址为224.0.1.1、224.128.1.1、225.0.1.1、239.128.1.1等组播组的组播MAC地址都为01-00-5e-00-01-01。

IPv6组播MAC地址

IPv6组播MAC地址的高16位为0x3333,低32位为IPv6组播地址的低32位。如图所示,是IPv6组播地址的MAC地址映射关系。

图片


IPv6组播地址与IPv6组播MAC地址的映射关系

可见IPv6中会有更多的组地址使用同一个MAC地址。

有哪些组播协议?

在IP组播传输模型中,发送者不关心接收者所处的位置,只要将数据发送到约定的目的地址,剩下的工作就交给网络去完成。网络中的组播设备必须收集接收者的信息,并按照正确的路径实现组播报文的转发和复制。在组播的发展过程中,形成了一套完整的协议来完成此任务。

IPv4网络中使用的组播协议

  • 组播组管理协议IGMP(Internet Group Management Protocol)IGMP是负责IPv4组播成员管理的协议,运行在组播网络中的最后一段,即三层网络设备与用户主机相连的网段内。IGMP协议在主机端实现组播组成员加入与离开,在上游的三层设备中实现组成员关系的维护与管理,同时支持与上层组播路由协议的信息交互。

  • 协议无关组播PIM(Protocol Independent Multicast)PIM作为一种IPv4网络中的组播路由协议,主要用于将网络中的组播数据流发送到有组播数据请求的组成员所连接的组播设备上,从而实现组播数据的路由查找与转发。PIM协议包括PIM-SM(Protocol Independent Multicast Sparse Mode)协议无关组播-稀疏模式和PIM-DM(Protocol Independent Multicast Dense Mode)协议无关组播-密集模式。PIM-SM适合规模较大、组成员相对比较分散的网络;PIM-DM适合规模较小、组播组成员相对比较集中的网络。

  • 组播源发现协议MSDP(Multicast Source Discovery Protocol)MSDP是为了解决多个PIM-SM域之间的互连的一种域间组播协议,用来发现其他PIM-SM域内的组播源信息,将远端域内的活动信源信息传递给本地域内的接收者,从而实现组播报文的跨域转发。

  • 组播边界网关协议MBGP(MultiProtocol Border Gateway Protocol)MBGP实现了跨AS域的组播转发。适用于组播源与组播接收者在不同AS域的场景。

  • IGMP SnoopingIGMP Snooping功能可以使设备工作在二层时,通过侦听上游的三层设备和用户主机之间发送的IGMP报文来建立组播数据报文的二层转发表,管理和控制组播数据报文的转发,进而有效抑制组播数据在二层网络中扩散。

  • BIERBIER是基于比特索引的显式复制技术,通过将组播报文目的节点的集合以比特串的方式封装在报文头部进行发送,从而使网络中间节点无需为每一个组播流(Per-flow)建立组播树及保存组播流状态,仅需根据报文头部的目的节点的集合进行复制转发。

IPv6网络中使用的组播协议

  • 组播侦听者发现协议MLD(Multicast Listener Discovery)MLD是负责IPv6组播成员管理的协议,运行在组播网络中的最后一段,即三层组播设备与用户主机相连的网段内。MLD协议在主机端实现组播组成员加入与离开,在三层设备上实现组成员关系的维护与管理,同时支持与组播路由协议的信息交互。

  • PIM(IPv6)PIM(IPv6)作为一种IPv6网络中的组播路由协议,主要用于将网络中的组播数据流引入到有组播数据请求的组成员所连接的路由器上,从而实现组播数据流的路由查找与转发。PIM(IPv6)协议包括PIM-SM(IPv6)和PIM-DM(IPv6)两种模式。PIM-SM(IPv6)适合规模较大、组成员相对比较分散的网络;PIM-DM(IPv6)适合规模较小、组播组成员相对比较集中的网络。

  • MLD SnoopingMLD Snooping功能可以使设备工作在二层时,通过侦听上游的三层设备和用户主机之间发送的MLD报文来建立组播数据报文的IPv6二层转发表,管理和控制组播数据报文的转发,进而有效抑制组播数据在二层网络中扩散

  • BIERv6BIERv6技术保留了BIER技术的优势,利用IPv6可扩展的能力,实现了组播路由技术在IPv6网络场景下的新应用。具有易部署、智能化、高可靠性三大特点。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/429629.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习-Pytorch实现经典VGGNet网络

深度学习-Pytorch实现经典VGGNet网络 深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打…

如何利用Flutter来写后端 服务端应用

前言 Flutter是谷歌推出的一款跨平台开发框架,现在属于此领域star最多的框架,其被广泛应用于构建前台界面,但或许很少人知道,他也可以写后端应用。 本文主角 flutter非常著名的getx库推出的get server jonataslaw/get_server:…

广播、组播域套接字的实现

思维导图&#xff1a; 广播模式&#xff1a; 发送端&#xff1a; #include <myhead.h> int main(int argc, const char *argv[]) {//创建套接字int sfdsocket(AF_INET,SOCK_DGRAM,0);if(sfd-1){perror("socket error");return -1;}//设置套接字允许广播属性i…

VS2022连接数据库以及常用的连接函数

下面是如何配置以及设置VS2022连接数据库 第一步:打开mysql的安装目录&#xff0c;默认安装目录如下&#xff1a;C:\Program Files\MySQL\MySQL Server 8.0&#xff0c;确认 lib 目录和include 目录是否存在。 第二步&#xff1a;打开VS2019&#xff0c;新建一个空工程,控制台…

STM32 | STM32时钟分析、GPIO分析、寄存器地址查找、LED灯开发(第二天)

STM32 第二天 一、 STM32时钟分析 寄存器&#xff1a;寄存器的功能是存储二进制代码&#xff0c;它是由具有存储功能的触发器组合起来构成的。一个触发器可以存储1位二进制代码&#xff0c;故存放n位二进制代码的寄存器&#xff0c;需用n个触发器来构成 在计算机领域&#x…

远程桌面连接不上服务器怎么办?

在进行远程桌面连接时&#xff0c;有时候会遇到连接不上服务器的问题&#xff0c;这给我们的工作和生活带来了很多不便。下面&#xff0c;我们来了解一下解决这个问题的方法和工具。 【天联】组网的介绍 【天联】组网是一款异地组网内网穿透产品&#xff0c;由北京金万维科技有…

快速上手:在 Android 设备上运行 Pipy

Pipy 作为一个高性能、低资源消耗的可编程代理&#xff0c;通过支持多种计算架构和操作系统&#xff0c;Pipy 确保了它的通用性和灵活性&#xff0c;能够适应不同的部署环境&#xff0c;包括但不限于云环境、边缘计算以及物联网场景。它能够在 X86、ARM64、海光、龙芯、RISC-V …

Linux网络编程 ——UDP 通信

Linux网络编程 ——UDP 通信 1. UDP1.1 UDP 通信1.2 广播1.3 组播&#xff08;多播&#xff09; 2. 本地套接字 1. UDP 1.1 UDP 通信 输入 man 2 sendto 查看说明文档 #include <sys/types.h> #include <sys/socket.h>ssize_t sendto(int sockfd, const void *buf…

GlusterFS系统内核调优

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 相关文章&#xff1a; 分布式存储——GlusterFS 关于GlusterFS的卷 GlusterFS—新手陷阱 GlusterFS常用命令集 前言 本文总…

深度学习预测分析API:金融领域的Game Changer

&#x1f680; 引言 在这个AI遍地开花的时代&#xff0c;谁能成为金融领域的真正Game Changer&#xff1f;那必然是是深度学习预测分析API。如大脑般高效运转的系统不仅颠覆了传统操作&#xff0c;更是以无与伦比的速度和精度赋予了金融数据以全新的生命。 &#x1f4bc; 广泛…

Doris实战——特步集团零售数据仓库项目实践

目录 一、背景 二、总体架构 三、ETL实践 3.1 批量数据的导入 3.2 实时数据接入 3.3 数据加工 3.4 BI 查询 四、实时需求响应 五、其他经验 5.1 Doris BE内存溢出 5.2 SQL任务超时 5.3 删除语句不支持表达式 5.4 Drop 表闪回 六、未来展望 原文大佬的这篇Doris数…

C# Winform画图绘制圆形

一、因为绘制的圆形灯需要根据不同的状态切换颜色,所以就将圆形灯创建为用户控件 二、圆形灯用户控件 1、创建用户控件UCLight 2、设值用户控件大小(30,30)。放一个label标签,AutoSize为false(不自动调整大小),Dock为Fill(填充),textaglign为居中显示。 private Color R…

LLM春招准备(1)

llm排序 GPT4V GPT-4V可以很好地理解直接绘制在图像上的视觉指示。它可以直接识别叠加在图像上的不同类型的视觉标记作为指针&#xff0c;例如圆形、方框和手绘&#xff08;见下图&#xff09;。虽然GPT-4V能够直接理解坐标&#xff0c;但相比于仅文本坐标&#xff0c;GPT-4V在…

【探索AI】二十一 深度学习之第4周:循环神经网络(RNN)与长短时记忆(LSTM)

循环神经网络&#xff08;RNN&#xff09;与长短时记忆&#xff08;LSTM&#xff09; RNN的基本原理与结构LSTM的原理与实现序列建模与文本生成任务实践&#xff1a;使用RNN或LSTM进行文本分类或生成任务步骤 1: 数据准备步骤 2: 构建模型步骤 3: 定义损失函数和优化器步骤 4: …

我选项目和做项目的两大准则

一、项目不在多&#xff0c;做精做透最重要 其实我们做生意做项目的一定要记住&#xff0c;手头上永远要有一样东西&#xff0c;即便是天塌下来你也能挣钱的&#xff0c;我经常称其为基本盘。比如我们手上的CSGO游戏搬砖&#xff0c;可能在经营这个项目的过程中会或多或少的接…

蓝桥杯练习题——dp

五部曲&#xff08;代码随想录&#xff09; 1.确定 dp 数组以及下标含义 2.确定递推公式 3.确定 dp 数组初始化 4.确定遍历顺序 5.debug 入门题 1.斐波那契数 思路 1.f[i]&#xff1a;第 i 个数的值 2.f[i] f[i - 1] f[i - 2] 3.f[0] 0, f[1] 1 4.顺序遍历 5.记得特判 …

项目管理:实现高效团队协作与成功交付的关键

在当今竞争激烈的市场环境中&#xff0c;项目管理已成为企业成功的关键因素之一。项目管理不仅涉及时间、成本和资源的有效管理&#xff0c;还涉及到团队协作、风险管理、沟通和交付。本文将探讨项目管理的核心要素&#xff0c;以及如何实现高效团队协作和成功交付。 一、明确项…

es集群的详细搭建过程

目录 一、VM配置二、集群搭建三、集群配置 一、VM配置 VM的安装 VMware Workstation 15 Pro的安装与破解 VM新建虚拟机 VM新建虚拟机 二、集群搭建 打开新建好的服务器&#xff0c;node1&#xff0c;使用xshell远程连接 下载es&#xff1a;https://www.elastic.co/cn/down…

【自然语言处理六-最重要的模型-transformer-下】

自然语言处理六-最重要的模型-transformer-下 transformer decoderMasked multi-head attentionencoder和decoder的连接部分-cross attentiondecoder的输出AT(Autoregresssive)NAT transformer decoder 今天接上一篇文章讲的encoder 自然语言处理六-最重要的模型-transformer-…

Carbondata编译适配Spark3

背景 当前carbondata版本2.3.1-rc1中项目源码适配的spark版本最高为3.1,我们需要进行spark3.3版本的编译适配。 原始编译 linux系统下载源码后&#xff0c;安装maven3.6.3&#xff0c;然后执行&#xff1a; mvn -DskipTests -Pspark-3.1 clean package会遇到一些网络问题&a…