CAN总线及通讯的工作原理

一、CAN总线

  CAN是控制器局域网络(Controller Area Network)的简称, 它是由研发和生产汽车电子产品著称的德国BOSCH公司开发的, 并最终成为国际标准(ISO11519),是国际上应用最广泛的现场总线之一。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、工作原理

CAN通讯的工作原理可以概括为以下几点

  1. 报文传输:CAN总线以报文的方式发送数据。每组报文的前十一位是标识符,用于标识消息的类型和优先级,不包括详细发送数据。CAN总线通过标识符的逐位仲裁解决总线访问碰撞问题,确保了报文和时间均不损失。
  2. 帧结构:CAN总线中的数据传输是通过帧(Frame)的方式进行的。帧可以分为数据帧、远程帧、错误帧和过载帧四种类型。数据帧承担着数据从发送器到接收器的传输责任,远程帧由总线单元发出,用于请求发送相同的数据帧。错误帧可由任何单元在检测到总线错误时发出,过载帧用于在两数据帧或远程帧之间提供延时。
  3. 广播通信:CAN总线采用广播通信方式,从一个节点向另一个节点发送数据。当一个节点要发送数据时,它将待发送的数据和标识符发送给本节点的CAN芯片,并使其进入准备阶段。一旦CAN芯片收到总线分配,就变为发送报文阶段,将待发送的数据组成规定的报文格式发出。此时,网络中的其他节点都处于接收阶段,对接收到的报文进行检测,以判断该报文是否是发给自己的。
  4. 面向内容的编址方案:CAN总线采用面向内容的编址方案,使得控制体系的构建更加灵活和方便。在不修改软硬件的情况下,可以向CAN总线中添加新节点,这使得CAN总线系统具有很好的扩展性和适应性。

Standard CAN

在这里插入图片描述
在这里插入图片描述

• SOF–The single dominant start of frame (SOF) bit marks the start of a message, and is used to
synchronize the nodes on a bus after being idle.
• Identifier-The Standard CAN 11-bit identifier establishes the priority of the message. The lower the
binary value, the higher its priority.
• RTR–The single remote transmission request (RTR) bit is dominant when information is required from
another node. All nodes receive the request, but the identifier determines the specified node. The
responding data is also received by all nodes and used by any node interested. In this way, all data
being used in a system is uniform.
• IDE–A dominant single identifier extension (IDE) bit means that a standard CAN identifier with no
extension is being transmitted.
• r0–Reserved bit (for possible use by future standard amendment).
• DLC–The 4-bit data length code (DLC) contains the number of bytes of data being transmitted.
• Data–Up to 64 bits of application data may be transmitted.
• CRC–The 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC) contains the checksum
(number of bits transmitted) of the preceding application data for error detection.
• ACK–Every node receiving an accurate message overwrites this recessive bit in the original message
with a dominate bit, indicating an error-free message has been sent. Should a receiving node detect an
error and leave this bit recessive, it discards the message and the sending node repeats the message
after rearbitration. In this way, each node acknowledges (ACK) the integrity of its data. ACK is 2 bits,
one is the acknowledgment bit and the second is a delimiter.
• EOF–This end-of-frame (EOF), 7-bit field marks the end of a CAN frame (message) and disables bitstuffing, indicating a stuffing error when dominant. When 5 bits of the same logic level occur in
succession during normal operation, a bit of the opposite logic level is stuffed into the data.
• IFS–This 7-bit interframe space (IFS) contains the time required by the controller to move a correctly
received frame to its proper position in a message buffer area.

在这里插入图片描述

Here is a breakdown of the different fields in the Standard CAN Frame:

  1. SOF (Start of Frame):
    • Length: 1 bit
    • Purpose: Indicates the beginning of a CAN frame. It is always dominant bit (0 in CAN).
  2. ID (Identifier):
    • Length: 11 bits
    • Purpose: Represents the priority and the address of the transmitting node. In CAN, the lower the identifier value, the higher the priority.
  3. RTR (Remote Transmission Request):
    • Length: 1 bit
    • Purpose: Used to differentiate a data frame from a remote request frame (RTR = 0 for data frames and RTR = 1 for remote request frames).
  4. Control
    • Length: 6 bits
    • Purpose: Contains control information like the data length code (DLC) which indicates the number of bytes in the data field.
  5. Data:
    • Length: 0 to 64 bits (0 to 8 bytes)
    • Purpose: Contains the actual data being transmitted. Its length is determined by the DLC in the control field.
  6. CRC (Cyclic Redundancy Check):
    • Length: 16 bits
    • Purpose: A polynomial code used to detect errors during data transmission. The transmitting node computers a CRC value based on the frame content and sends it along with the frame. The receiving node then calculates its own CRC from the received frame and compares it to the received CRC. If they match, it’s assumed that the frame was received correctly.
  7. ACK (Acknowledgement):
    • Length: 2 bits (one for the slot and one for the delimiter)
    • Purpose: The ACK slot is overwritten with a dominant bit by nodes that correctly receive the frame. If the transmitting node sees a dominant bit in the ACK slot, it knows that at least one other node on the network received its frame correctly. Following, there is an ACK delimiter bit, which is always recessive (1 in CAN).
  8. EOF (End of Frame):
    • Length: 7 bits
    • Purpose: Marks the end of a CAN frame. It consist of 7 consecutive recessive bits, ensuring that there’s enough separation between consecutive frames.

In addition to the fields described above, actual CAN communication also involves some other fields and error handling mechanisms not depicted in this standard CAN frame. These include:

  • Interframe Space: A time interval between two consecutive frames.
  • Error Frames: If a node detects an error in a frame, it will transmit an error frame to notify other nodes of the error.
  • Overload Frames: Used to introduce a delay between consecutive data or remote transmit frames.

Extended CAN
在这里插入图片描述
在这里插入图片描述

the Extended CAN message is the same as the Standard message with the
addition of:
• SRR–The substitute remote request (SRR) bit replaces the RTR bit in the standard message location
as a placeholder in the extended format.
• IDE–A recessive bit in the identifier extension (IDE) indicates that more identifier bits follow. The 18-bit
extension follows IDE.
• r1–Following the RTR and r0 bits, an additional reserve bit has been included ahead of the DLC bit.

在这里插入图片描述
  此外,CAN总线还采用了差分信号传输方式,即通过两个线路传输一个信号,其中一个线路传输高电平信号,另一个线路传输低电平信号。这种差分信号传输方式可以提供更好的抗干扰性能,确保数据传输的可靠性和稳定性。

在这里插入图片描述
在这里插入图片描述
参考https://blog.csdn.net/gtkknd/article/details/104813633

三、CAN总线特点

  1. 实时性: CAN总线具有优越的实时性能,适用于需要及时传输数据的应用,如汽车控制系统、工业自动化等。仲裁机制和帧优先级的设计保证了低延迟和可预测性。
  2. 多主站结构:CAN总线上的每个节点都可以在任何时刻主动地向网络上的其他节点发送信息,而不分主从。CAN支持多主机系统,多个节点可以同时发送和接收数据。这种分布式控制结构使得系统更加灵活,适用于复杂的嵌入式网络。CAN总线上的节点既可以发送数据又可以接收数据,没有主从之分。但是在同一个时刻,只能由一个节点发送数据,其他节点只能接收数据。
  3. 差分信号传输: CAN使用差分信号传输,通过两个线路(CAN_H和CAN_L)之间的电压差来传递信息。这种差分传输方式提供了良好的抗干扰性能,使得CAN总线适用于工业环境等有电磁干扰的场合。
  4. 仲裁机制: CAN总线采用非破坏性仲裁机制,通过比较消息标识符的优先级来决定哪个节点有权继续发送数据。这种机制确保了总线上数据传输的有序性,避免了冲突。
  5. 广播通信: CAN总线采用广播通信方式,即发送的数据帧可以被总线上的所有节点接收。这种特性有助于信息的共享和同步,同时减少了系统的复杂性。
  6. 低成本: CAN总线的硬件成本相对较低,适用于大规模的系统集成。由于CAN控制器在硬件上实现了仲裁机制,无需额外的主机处理器,减小了成本和复杂性。
  7. 灵活性: CAN协议灵活适应不同的应用场景,支持不同的波特率和通信速率。这使得CAN总线可以被广泛用于各种嵌入式系统,从低速的传感器网络到高速的汽车控制系统。
  8. 错误检测和处理:CAN总线具有强大的错误检测和处理能力。每帧信息都有CRC校验和其他检错措施,保证了通信的可靠性。当检测到错误时,节点会自动重新传输已损坏的信息。此外,如果节点出现严重错误,它可以自动关闭输出功能,以使总线上其他节点的操作不受影响。
  9. 多种帧类型:CAN总线上的节点没有地址的概念。CAN总线上的数据是以帧为单位传输的,帧又分为数据帧、遥控帧等多种帧类型,帧包含需要传输的数据或控制信息。
  10. 线与逻辑:CAN总线具有“线与”的特性,也就是当由两个节点同时向总线发送信号时,一个是发送显性电平(逻辑0),另一个发送隐性电平(逻辑1),则总线呈现为显性电平。这个特性被用于总线总裁,也就是哪个节点优先占用总线进行发送操作。
  11. 特定标识符:每一个帧有一个标识符(Identifier,一下简称ID)。ID不是地址,它表示传输数据的类型,也可以用于总线仲裁时确定优先级。例如,在汽车的CAN总线上,假设用于碰撞检测的节点输出数据帧ID为01,车内温度检测节点发送数据帧的ID为05等。
  12. 滤波特性:每个CAN节点都接收数据,但是可以对接收的帧根据ID进行过滤。只有节点需要的数据才会被接收并进一步处理,不需要的数据会被自动舍弃。例如,假设安全气囊控制器只接受碰撞检测节点发出的ID为01的帧,这种ID的过滤时有硬件完成的,以便安全气囊控制器在发送碰撞时能及时响应。
  13. 半双工:CAN总线通信时半双工的,即总线不能同时发送和接收。在多个节点竞争总线进行发送时,通过ID的优先级进行仲裁,竞争胜出的节点继续发送,竞争失败的节点立刻转入接收状态。
  14. 无时钟信号:CAN总线没有用于同步的时钟信号,所以需要规定CAN总线通信的波特率,所以节点都是用同样的波特率进行通信。
  15. 高传输速率和长距离通信:CAN总线的传输速率最高可以达到1Mbps,而直接通信距离最远可以达到10km(在传输速率低于5kbps的情况下)。
  16. 报文滤波和传输方式:CAN总线通过报文滤波实现点对点、一点对多点及全局广播等几种方式传送数据,无需专门的“调度”。此外,CAN总线支持短帧结构,每帧字节数最多为8个,传输时间短,抗干扰能力强,检错效果好。
  17. 节点数多和扩展性强:CAN总线上的节点数主要取决于总线驱动电路,目前可以达到110个。同时,CAN总线的报文标志符数量也很多,几乎不受限制,这使得CAN总线具有很强的扩展性。
  18. 通信介质灵活:CAN总线的通信介质可以是双绞线、同轴电缆或光纤,选择灵活,适应了不同的应用环境。
  19. 标准化和规范化:CAN总线是目前为止惟一有国际标准的现场总线(国际标准ISO11898),这保证了其广泛的应用和互操作性。
  20. 高性价比:CAN总线的设计使其具有很高的性价比,适用于各种规模和应用场景。

参考:
https://www.autopi.io/blog/can-bus-explained/

https://www.allaboutcircuits.com/technical-articles/introduction-to-can-controller-area-network/

https://www.ti.com/lit/an/sloa101b/sloa101b.pdf

https://mp.weixin.qq.com/s/QZ-VEf2qHqffgeJU0qGfJw

https://blog.csdn.net/wangguchao/article/details/124715519

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/438858.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大规模语言模型中新的思想和方法

大规模语言模型的发展引入了多项创新的思想和方法,这些创新对实际效果产生了深远的影响: 1. 深度神经网络架构创新 如Transformer模型的引入,利用自注意力机制解决了长序列输入的处理难题,使得模型能够更有效地捕获语言中的长距离…

2024年AI辅助研发:科技遇上创意,无限可能的绽放

码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 ! 随着人工智能技术的持续突破与深度融合,2024年AI辅助研发正以前所未有的速度和规模,引领着科技界和工业界…

加密 / MD5算法 /盐值

目录 加密的介绍 MD5算法 盐值 加密的介绍 加密介绍:在MySQL数据库中, 我们常常需要对密码, 身份证号, 手机号等敏感信息进行加密, 以保证数据的安全性。 如果使用明文存储, 当黑客入侵了数据库时, 就可以轻松获取到用户的相关信息, 从而对用户或者企业造成信息…

Java学习笔记------内部类

类的五大成员 属性、方法、构造方法、代码块、内部类 内部类 格式: public class Outer{//外部类 public class Inner{//内部类 } } public class Test{//外部其他类 public static void main(String[] args) } inner类表示的事物是Outer类的一部分&#xf…

ABB机器人信号关联Cross Connection的具体方法示例

ABB机器人信号关联Cross Connection的具体方法示例 如下图所示,点击打开菜单,然后点击控制面板进入, 如下图所示,找到配置,点击进入, 如下图所示,找到“Cross Connection” 信号关联,点击进入, 如下图所示,选中“Cross Connection”后,点击下方的“显示全部”, 如下…

DFT应用:计算线性卷积

目录 一、计算两个有限长序列的线性卷积示例 二、无限长序列和有限长序列的卷积(重叠相加法) 实验1:数据实验 实验2:纯净语音加混响(音效) 二、无限长序列和有限长序列的卷积(重叠保留法) 实验1:数据实验 三、小结 一、计算两个有限长序…

吴恩达机器学习笔记十五 什么是导数 计算图 大型神经网络案例

假设函数 J(w)w^2,当 w3 时, J(w)3*39 当我们给w增加一个很小的量时,观察J(w)如何变化。 例如 w30.001, 则J(w)9.006001,因此当w3且增加一个变化量 ε 时,J(w)将会增加 6ε&#x…

非线形优化 Matlab和Python (含01规划)

MATLAB:fmincon 在matlab中,一般使用fmincon来解决非线性优化问题 [x,fval,exitflag,output,lambda,grad,hessian]fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 一般使用: [x,fval,exitflag]fmincon(fun,x0,A,b,Aeq,beq,lb,ub,non…

RestTemplate解析响应数据中文字符出现Unicode编码问题解决和源码剖析

问题 基于上篇文章,开发过程中又遇到一个restTemplate问题: restTemplate请求接口返回响应数据为json时,解析其中的中文字符出现Unicode编码 测试 接口如下: 测试代码: 觉得很奇怪,我的restTemplate配置…

排序算法——梳理总结

✨冒泡 ✨选择 ✨插入  ✨标准写法  &#x1f3ad;不同写法 ✨希尔排序——标准写法 ✨快排 ✨归并 ✨堆排 ✨冒泡 void Bubble(vector<int>& nums) {// 冒泡排序只能先确定最右边的结果&#xff0c;不能先确定最左边的结果for (int i 0; i < nums.size(); i){…

Effective C++ 学习笔记 条款16 成对使用new和delete时要采取相同形式

以下动作有什么错&#xff1f; std::string *stringArray new std::string[100]; // ... delete stringArray;每件事看起来都井然有序&#xff0c;使用了new&#xff0c;也搭配了对应的delete。但还是有某样东西完全错误&#xff1a;你的程序行为未定义。至少&#xff0c;str…

自律篇001-养成自律的秘密武器1-目标规划表

&#x1f680;以前在某书上看到一些博主非常自律&#xff0c;比如每天5点多起床看书&#xff0c;或者每天坚持健身&#xff0c;直到练出马甲线&#xff0c;还有一边工作一边考研等等&#xff0c;自己也曾尝试过做一些目标规划&#xff0c;但结果都不尽人意。写计划的时候往往信…

阿里云k8s环境下,因slb限额导致的发布事故

一、背景 阿里云k8s容器&#xff0c;在发布java应用程序的时候&#xff0c;客户端访问出现500错误。 后端服务是健康且可用的&#xff0c;网关层大量500错误请求&#xff0c;slb没有流入和流出流量。 经过回滚&#xff0c;仍未能解决错误。可谓是一次血的教训&#xff0c;特…

UI学习 一

教程&#xff1a;Accessibility – Material Design 3 需要科学上网&#xff0c;否则图片显示不出来。设计教程没有图片说明&#xff0c;不容易理解。 优化UI方向 清晰可见的元素足够的对比度和尺寸重要性的明确等级一眼就能辨别的关键信息 传达某一事物的相对重要性 将重…

简单了解Stable Diffusion里面sampling methods(采样方法)每种方法的效果

在 Stable Diffusion 模型中&#xff0c;采样方法&#xff08;Sampling Methods&#xff09;是指在生成图像时用于从模型的概率分布中抽取样本的算法。这些方法对于生成图像的质量、多样性和速度都有重要影响&#xff0c;以下是一些 Stable Diffusion 中常见的采样方法。 那么…

STM32day2

1.思维导图 个人暂时的学后感&#xff0c;不一定对&#xff0c;没什么东西&#xff0c;为做项目奔波中。。。1.使用ADC采样光敏电阻数值&#xff0c;如何根据这个数值调节LED灯亮度。 while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */adc_val HAL_ADC_GetValue(&a…

2575. 找出字符串的可整除数组(Go语言)

https://leetcode.cn/problems/find-the-divisibility-array-of-a-string/ 在看题解之前&#xff0c;我的代码是以下这样&#xff1a; package mainimport ("fmt" )func main() {fmt.Println(divisibilityArray("998244353", 3)) }func divisibilityArray…

基于LSTM实现春联上联对下联

按照阿光的项目做出了学习笔记&#xff0c;pytorch深度学习实战项目100例 基于LSTM实现春联上联对下联 基于LSTM&#xff08;长短期记忆网络&#xff09;实现春联上联对下联是一种有趣且具有挑战性的任务&#xff0c;它涉及到自然语言处理&#xff08;NLP&#xff09;中的序列…

【嵌入式】嵌入式系统稳定性建设:静态代码扫描的稳定性提升术

1. 概述 在嵌入式系统开发过程中&#xff0c;代码的稳定性和可靠性至关重要。静态代码扫描工具作为一种自动化的代码质量检查手段&#xff0c;能够帮助开发者在编译前发现潜在的缺陷和错误&#xff0c;从而增强系统的稳定性。本文将介绍如何在嵌入式C/C开发中使用静态代码扫描…

【数据结构】栈和队列的应用——括号匹配 + 表达式求值 + 表达式转换 +栈的递归应用+队列在计算机系统中的应用

文章目录 3.栈的应用3.1 括号匹配问题3.2 表达式求值3.2.1 三种算术表达式3.2.2 后缀表达式A.中缀转后缀B.后缀表达式的计算 3.2.3 前缀表达式A.中缀转前缀B.前缀表达式的计算 3.2.4 中缀表达式的求值 3.3 递归中栈的应用 4.队列的应用 栈基础知识&#xff1a;【数据结构】栈 顺…