Learn OpenGL 06 坐标系统

概述

  1. 局部坐标是对象相对于局部原点的坐标,也是物体起始的坐标。
  2. 下一步是将局部坐标变换为世界空间坐标,世界空间坐标是处于一个更大的空间范围的。这些坐标相对于世界的全局原点,它们会和其它物体一起相对于世界的原点进行摆放。
  3. 接下来我们将世界坐标变换为观察空间坐标,使得每个坐标都是从摄像机或者说观察者的角度进行观察的。
  4. 坐标到达观察空间之后,我们需要将其投影到裁剪坐标。裁剪坐标会被处理至-1.0到1.0的范围内,并判断哪些顶点将会出现在屏幕上。
  5. 最后,我们将裁剪坐标变换为屏幕坐标,我们将使用一个叫做视口变换(Viewport Transform)的过程。视口变换将位于-1.0到1.0范围的坐标变换到由glViewport函数所定义的坐标范围内。最后变换出来的坐标将会送到光栅器,将其转化为片段。

裁剪空间

在一个顶点着色器运行的最后,OpenGL期望所有的坐标都能落在一个特定的范围内,且任何在这个范围之外的点都应该被裁剪掉(Clipped)。被裁剪掉的坐标就会被忽略,所以剩下的坐标就将变为屏幕上可见的片段。这也就是裁剪空间(Clip Space)名字的由来。

因为将所有可见的坐标都指定在-1.0到1.0的范围内不是很直观,所以我们会指定自己的坐标集(Coordinate Set)并将它变换回标准化设备坐标系,就像OpenGL期望的那样。

为了将顶点坐标从观察变换到裁剪空间,我们需要定义一个投影矩阵(Projection Matrix),它指定了一个范围的坐标,比如在每个维度上的-1000到1000。投影矩阵接着会将在这个指定的范围内的坐标变换为标准化设备坐标的范围(-1.0, 1.0)。所有在范围外的坐标不会被映射到在-1.0到1.0的范围之间,所以会被裁剪掉。在上面这个投影矩阵所指定的范围内,坐标(1250, 500, 750)将是不可见的,这是由于它的x坐标超出了范围,它被转化为一个大于1.0的标准化设备坐标,所以被裁剪掉了。

如果只是图元(Primitive),例如三角形,的一部分超出了裁剪体积(Clipping Volume),则OpenGL会重新构建这个三角形为一个或多个三角形让其能够适合这个裁剪范围。

由投影矩阵创建的观察箱(Viewing Box)被称为平截头体(Frustum),每个出现在平截头体范围内的坐标都会最终出现在用户的屏幕上。将特定范围内的坐标转化到标准化设备坐标系的过程(而且它很容易被映射到2D观察空间坐标)被称之为投影(Projection),因为使用投影矩阵能将3D坐标投影(Project)到很容易映射到2D的标准化设备坐标系中。

一旦所有顶点被变换到裁剪空间,最终的操作——透视除法(Perspective Division)将会执行,在这个过程中我们将位置向量的x,y,z分量分别除以向量的齐次w分量;透视除法是将4D裁剪空间坐标变换为3D标准化设备坐标的过程。这一步会在每一个顶点着色器运行的最后被自动执行。

在这一阶段之后,最终的坐标将会被映射到屏幕空间中(使用glViewport中的设定),并被变换成片段。

将观察坐标变换为裁剪坐标的投影矩阵可以为两种不同的形式,每种形式都定义了不同的平截头体。我们可以选择创建一个正射投影矩阵(Orthographic Projection Matrix)或一个透视投影矩阵(Perspective Projection Matrix)。

正射投影(正交投影)

要创建一个正射投影矩阵,我们可以使用GLM的内置函数glm::ortho

glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);

前两个参数指定了平截头体的左右坐标,第三和第四参数指定了平截头体的底部和顶部。通过这四个参数我们定义了近平面和远平面的大小,然后第五和第六个参数则定义了近平面和远平面的距离。这个投影矩阵会将处于这些x,y,z值范围内的坐标变换为标准化设备坐标。

正射投影矩阵直接将坐标映射到2D平面中,即你的屏幕,但实际上一个直接的投影矩阵会产生不真实的结果,因为这个投影没有将透视(Perspective)考虑进去。所以我们需要透视投影矩阵来解决这个问题。

透视投影

在GLM中可以这样创建一个透视投影矩阵:

glm::mat4 proj = glm::perspective(glm::radians(45.0f), (float)width/(float)height, 0.1f, 100.0f);

同样,glm::perspective所做的其实就是创建了一个定义了可视空间的大平截头体,任何在这个平截头体以外的东西最后都不会出现在裁剪空间体积内,并且将会受到裁剪。一个透视平截头体可以被看作一个不均匀形状的箱子,在这个箱子内部的每个坐标都会被映射到裁剪空间上的一个点。下面是一张透视平截头体的图片:

perspective_frustum

它的第一个参数定义了fov的值,它表示的是视野(Field of View),并且设置了观察空间的大小。如果想要一个真实的观察效果,它的值通常设置为45.0f,但想要一个末日风格的结果你可以将其设置一个更大的值。第二个参数设置了宽高比,由视口的宽除以高所得。第三和第四个参数设置了平截头体的平面。我们通常设置近距离为0.1f,而远距离设为100.0f。所有在近平面和远平面内且处于平截头体内的顶点都会被渲染。

当你把透视矩阵的 near 值设置太大时(如10.0f),OpenGL会将靠近摄像机的坐标(在0.0f和10.0f之间)都裁剪掉,这会导致一个你在游戏中很熟悉的视觉效果:在太过靠近一个物体的时候你的视线会直接穿过去。

组合应用

 glm::mat4 model;
       // model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f));
        model = glm::rotate(model, (float)glfwGetTime() * glm::radians(50.0f), glm::vec3(0.5f, 1.0f, 0.0f));
        glm::mat4 view;
        // 注意,我们将矩阵向我们要进行移动场景的反方向移动。
        view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
        glm::mat4 projection;
        projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);

        int modelLoc = glGetUniformLocation(myshader->ID, "model");
        glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
        int viewLoc = glGetUniformLocation(myshader->ID, "view");
        glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
        int projectionLoc = glGetUniformLocation(myshader->ID, "projection");
        glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));


        myshader->use();
        // myshader->setFloat("offset", 0.01+glfwGetTime());
        myshader->setFloat("mixValue", mixValue);

        glBindVertexArray(VAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

结果:

默认是没有开启深度测试的

需要开启GL_DEPTH_TEST:

glEnable(GL_DEPTH_TEST);

增加更多立方体

这里按照教程上的话中间的箱子是不会转的,需要给i+1。不然的话默认是0。还有就是只是静止地旋转,需要改变随时间变化的角度

        for (unsigned int i = 0; i < 10; i++)
        {
            glm::mat4 model;
            model = glm::translate(model, cubePositions[i]);
            float angle = 20.0f * (i+1)* (float)glfwGetTime();
            model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
            //model = glm::rotate(model, glm::radians(angle), glm::vec3(0.0f, 0.0f, 1.5f));
            myshader->setMat4("model", model);

            glDrawArrays(GL_TRIANGLES, 0, 36);
        }

练习

  • 使用模型矩阵只让是3倍数的箱子旋转(以及第1个箱子),而让剩下的箱子保持静止。参考解答。

只需要修改当i是3的倍数的时候才设置角度随时间旋转即可

            if (i % 3 == 0)  // every 3rd iteration (including the first) we set the angle using GLFW's time function.
                angle = glfwGetTime() * 25.0f;

结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/445878.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java - 探究Java优雅退出的两种机制

文章目录 概述Java优雅停机_ ShutdownHook 机制步骤Code Java优雅停机_ 信号量机制SignalHandler 工作原理使用步骤Linux支持的信号量根据操作系统选择信号量Code 注意事项 概述 在Linux上通过kill -9 pid方式强制终止进程的副作用&#xff0c;这种方式虽然简单高效&#xff0…

使用Windows API实现一个简单的串口助手

使用Windows API实现一个简单的串口助手 目录 使用window API开发一个具有字符串收发功能的串口助手 开发环境串口设备相关的API步骤实现代码收发测试图 使用window API开发一个具有字符串收发功能的串口助手 开发环境 Visual Studio 2015 串口设备相关的API CreateFile 参…

【MySQL | 第四篇】区分SQL语句的书写和执行顺序

文章目录 4.区分SQL语句的书写和执行顺序4.1书写顺序4.2执行顺序4.3总结4.4扩充&#xff1a;辨别having与where的异同&#xff1f;4.5聚合查询 4.区分SQL语句的书写和执行顺序 注意&#xff1a;SQL 语句的书写顺序与执行顺序不是一致的 4.1书写顺序 SELECT <字段名> …

Nwatch在stm32上的移植

目录 Nwatch在stm32上的移植前言实验目的移植game1_task任务相关代码片段结果本文中使用的工程 Nwatch在stm32上的移植 本文目标&#xff1a;Nwatch在stm32上的移植 按照本文的描述&#xff0c;应该可以跑通实验并举一反三。 先决条件&#xff1a;装有编译和集成的开发环境&…

不允许你不知道Python作用域

在Python中&#xff0c;变量的作用域限制非常重要。根据作用域分类&#xff0c;有局部、全局、函数和内建作用域。无作用域限制的变量可以在分支语句和循环中定义&#xff0c;并在外部直接访问。不同的作用域决定了变量的可访问范围&#xff0c;访问权限取决于变量的位置。 1.…

力扣中档题:旋转链表

思路&#xff1a;将链表数据放到数组中&#xff0c;将数组旋转&#xff0c;然后再赋值给链表 struct ListNode* rotateRight(struct ListNode* head, int k) {if(headNULL){return NULL;}int count0;struct ListNode*goodhead;while(good){count;goodgood->next;}int round…

解锁网络数据:入门级IP代理使用教程

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

10 vector的使用

文档介绍 文档介绍 1.vector是表示可变大小数组的容器 2.就像数组一样&#xff0c;vecotr也采用的连续存储空间来存储元素&#xff0c;也就是意味着可以采用下标对vector的元素进行访问&#xff0c;和数组一样高效。但是又不像数组&#xff0c;大小是可以动态改变的&#xff…

【Web】浅聊Java反序列化之C3P0——URLClassLoader利用

目录 前言 C3P0介绍 回归本源——序列化的条件 利用链 利用链分析 入口——PoolBackedDataSourceBase#readObject 拨云见日——PoolBackedDataSourceBase#writeObject 综合分析 EXP 前言 这条链最让我眼前一亮的就是对Serializable接口的有无进行了一个玩&#xff0c…

权限管理系统-0.2.0

三、菜单管理接口 3.1 创建SysMenu类及相关类 首先创建sys_menu表&#xff1a; CREATE TABLE sys_menu (id bigint(20) NOT NULL AUTO_INCREMENT COMMENT 编号,parent_id bigint(20) NOT NULL DEFAULT 0 COMMENT 所属上级,name varchar(20) NOT NULL DEFAULT COMMENT 名称,…

【脚本玩漆黑的魅影】寂雨镇全自动练级

文章目录 原理全部代码 原理 老样子。 治疗路径&#xff0c;练级路径。 def zhi_liao(): # 去治疗walk(RIGHT)walk(RIGHT)press(UP, 0.4)for i in [1, 2, 3, 4]:press(A)for i in [1, 2, 3, 4]:press(B)press(DOWN, 0.4)press(LEFT) def chu_qu(): # 右逛c.press(B)press(…

力扣同类题:重排链表

很明显做过一次 class Solution { public:void reorderList(ListNode* head) {if(!head||!head->next)return;ListNode *fasthead,*lowhead;ListNode *prenullptr,*curnullptr,*nextnullptr;while(fast->next!nullptr){fastfast->next;if(fast->next)fastfast->…

风控规则决策树可视化(升级版)

上一篇我们介绍了如何通过交叉表来生成规则&#xff0c;本篇我们来介绍一种可以生成多规则的方法&#xff0c;决策树。除了做模型以外&#xff0c;也可以用来挖掘规则&#xff0c;原理是一样的。 下面通过sklearn的决策树方法来实现风控规则的发现&#xff0c;同时分享一种可以…

【联邦学习综述:概念、技术】

出自——联邦学习综述&#xff1a;概念、技术、应用与挑战。梁天恺 1*&#xff0c;曾 碧 2&#xff0c;陈 光 1 从两个方面保护隐私数据 硬件层面 可 信 执 行 环 境 &#xff08;Trusted Execution Environment&#xff0c;TEE&#xff09;边 缘 计 算&#xff08;Edge Com…

电动车窗开关中MOS管的应用解析

随着科技的不断发展&#xff0c;电动车窗系统已经成为现代汽车中不可或缺的一部分。而MOS&#xff08;金属氧化物半导体&#xff09;管的应用&#xff0c;为电动车窗开关注入了新的活力&#xff0c;极大地提高了其使用寿命和安全性。 一、MOS的优越性能 MOS管以其卓越的开关…

磁盘无法访问?别慌,这里有解决之道!

电脑中&#xff0c;那块储存着重要文件与数据的磁盘&#xff0c;突然之间无法访问&#xff0c;是不是让你感到惊慌失措&#xff1f;面对这样的突发状况&#xff0c;很多人可能会感到手足无措。但别担心&#xff0c;本文将为你解析磁盘无法访问的原因&#xff0c;并提供实用的数…

小文件问题及GlusterFS的瓶颈

01海量小文件存储的挑战 为了解决海量小文件的存储问题&#xff0c;必须采用分布式存储&#xff0c;目前分布式存储主要采用两种架构&#xff1a;集中式元数据管理架构和去中心化架构。 (1)集中式元数据架构&#xff1a; 典型的集中式元数据架构的分布式存储有GFS&#xff0…

代码讲解:如何把3D数据转换成旋转的视频?

目录 3D数据集下载 读取binvox文件 使用matplotlib创建图 动画效果 完整代码 3D数据集下载 这里以shapenet数据集为例&#xff0c;可以访问外网的可以去直接申请下载&#xff1b;我也准备了一个备份在百度网盘的数据集&#xff0c;可以参考&#xff1a; ShapeNet简介和下…

Leetcode 54. 螺旋矩阵

题目描述&#xff1a; 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[1,2,3,6,9,8,7,4,5] 示例 2&#xff1a; 输入&a…

Linux文件系列: 深入理解缓冲区和C标准库的简单模拟实现

Linux文件系列: 深入理解缓冲区和C标准库的简易模拟实现 一.缓冲区的概念和作用二.一个样例三.理解样例1.样例解释2.什么是刷新? 四.简易模拟实现C标准库1.我们要实现的大致框架2.mylib.h的实现1.文件结构体的定义2.myfopen等等函数的声明3.完整mylib.h代码 3.myfopen函数的实…
最新文章