【armv8 / armv9】: MMU深度学习

文章目录

  • 一、MMU概念介绍
  • 二、虚拟地址空间和物理地址空间
    • 2.1、(虚拟/物理)地址空间的范围
    • 2.2、物理地址空间有效位(范围)
  • 三、Translation regimes
  • 四、地址翻译/几级页表?
    • 4.1、思考:页表到底有几级?
    • 4.2、以4KB granule为例,页表的组成方式
    • 4.3、optee实际使用的示例
  • 五、页表格式(Descriptor format)
    • 5.1、ARMV8支持的3种页表格式
    • 5.2、AArch64 Long Descriptor支持的四种entry
    • 5.3、页表的属性位介绍( Block Descriptor/Page Descriptor )
      • 5.3.1、stage1的页表属性
      • 5.3.2、stage2的页表属性
      • 5.3.3、其它标志位的详细介绍
  • 六、地址翻译指令介绍
  • 七、地址翻译相关的系统寄存器总结
    • 7.1 SCTLR_ELx
    • 7.2 TTBRn_ELx
    • 7.3 TCR_ELx
    • 7.3 MAIR_ELx

思考
1、为什么要用虚拟地址?为什么要用MMU?
2、MMU硬件完成了地址翻译,我们软件还需要做什么?
3、MMU在哪里?MMU和SMMU是什么关系?

一、MMU概念介绍

MMU分为两个部分: TLB maintenance 和 address translation

MMU的作用,主要是完成地址的翻译,即虚拟地址到物理地址的转换,无论是main-memory地址(DDR地址),还是IO地址(设备device地址),在开启了MMU的系统中,CPU发起的指令读取、数据读写都是虚拟地址,在ARM Core内部,会先经过MMU将该虚拟地址自动转换成物理地址,然后在将物理地址发送到AXI总线上,完成真正的物理内存、物理设备的读写访问.

那么为什么要用MMU?为什么要用虚拟地址? 以下总结了三点:

  • 多个程序独立执行 — 不需要知道具体物理地址

  • 虚拟地址是连续的 — 程序可以在多个分段的物理内存运行

  • 允许操作系统管理内存 — 哪些是可见的,哪些是允许读写的,哪些是cacheable的……

既然MMU开启后,硬件会自动的将虚拟地址转换成物理地址,那么还需要我们软件做什么事情呢? 即创建一个页表翻译都需要做哪些事情呢? 或者说启用一个MMU需要软件做什么事情呢?

  • 设置页表基地址TTBR(Specify the location of the translation table)
  • 初始化MAIR_EL3 (Memory Attribute Indirection Register)
  • 配置TCR_EL3 (Configure the translation regime)
  • 创建页表 (Generate the translation tables)
  • Enable the MMU

二、虚拟地址空间和物理地址空间

2.1、(虚拟/物理)地址空间的范围

内核虚拟地址空间的范围是什么?应用程序的虚拟地址空间的范围是什么?
以前我们在学习操作系统时,最常看到的一句话是:内核的虚拟地址空间范围是3G-4G地址空间,应用程序的虚拟地址空间的范围是0-3G地址空间; 到了aarch64上,则为 : 内核的虚拟地址空间是0xffff_0000_0000_0000 - 0xffff_ffff_ffff_ffff , 应用程序的虚拟地址空间是: 0x0000_0000_0000_0000 - 0x0000_ffff_ffff_ffff.
做为一名杠精,必需告诉你这句话是错误的。错误主要有两点:

  • (1) arm处理器,并没有规定你的内核必需要使用哪套地址空间,以上这是Linux Kernel自己的设计,它设计了让Linux Kernel使用0xffff_0000_0000_0000 - 0xffff_ffff_ffff_ffff地址区间,Userspace使用0x0000_0000_0000_0000 - 0x0000_ffff_ffff_ffff地址区间,这里正好可以举一个反例,比如optee os,它的kernel mode和user mode使用的都是高位的虚拟地址空间。
  • (2) 高位是有几个F(几个1)是根据你操作系统使用的有效虚拟地址位来决定的,也并非固定的。比如optee中的mode和user mode的虚拟地址空间范围都是: 0x0000_0000_0000_0000 - 0x0000_0000_ffff_ffff

其实arm文档中有一句标准的描述 :

高位是1的虚拟地址空间,使用TTBR1_ELx基地址寄存器进行页表翻译;高位是0的虚拟地址空间,使用TTBR0_ELx基地址寄存器页表翻译。 所以不应该说,因为你使用了哪个寄存器(TTBR0/TTBR1),然后决定了你使用的哪套虚拟地址空间;应该说,你操作系统(或userspace软件)使用了哪套虚拟地址空间,决定了使用哪个哪个基地址寄存器(TTBR0/TTBR1)进行翻译。

如下便是两套虚拟地址空间和TTBRn_ELx的对应关系,其中高位的位数不是固定的16(即T1SZ和T0SZ不一定等于16)

在这里插入图片描述

以下摘自ARM文档的官方描述:

As Figure shows, for 48-bit VAs:
• The address range translated using TTBR0_ELx is 0x0000000000000000 to 0x0000FFFFFFFFFFFF.
• The address range translated using TTBR1_ELx is 0xFFFF000000000000 to 0xFFFFFFFFFFFFFFFF.
In an implementation that includes ARMv8.2-LVA and is using Secure EL3 the 64KB translation granule, for 52-bit VAs:
• The address range translated using TTBR0_ELx is 0x0000000000000000 to 0x000FFFFFFFFFFFFF.
• The address range translated using TTBR1_ELx is 0xFFF0000000000000 to 0xFFFFFFFFFFFFFFFF.
Which TTBR_ELx is used depends only on the VA presented for translation. The most significant bits of the VA must all be the same value and:
• If the most significant bits of the VA are zero, then TTBR0_ELx is used.
• If the most significant bits of the VA are one, then TTBR1_ELx is used.

2.2、物理地址空间有效位(范围)

具体每一个core的物理地址是多少位,其实都是定死的,虚拟地址是多少位,是编译或开发的时候根据自己的需要自己配置的。如下表格摘出了部分arm core的物理地址有效位,所以你具体使用多少有效位的物理地址,可以查询core TRM手册。

在这里插入图片描述

页表翻译相关寄存器的配置

  • ID_AA64MMFR0_EL1.PARange : Physical address size : 读取arm寄存器,得到当前系统支持的有效物理地址是多少位

    在这里插入图片描述

  • TCR_EL1.IPS : Output address size : 告诉mmu,你需要给我输出多少位的物理地址

    在这里插入图片描述

  • TCR_EL1.T0SZ和TCR_EL1.T1SZ : Input address size : 告诉mmu,我输入的是多少有效位的虚拟地址

    在这里插入图片描述

三、Translation regimes

内存管理单元 (MMU) 执行地址翻译。MMU 包含以下内容:

  • The table walk unit : 它从内存中读取页表,并完成地址转换

  • Translation Lookaside Buffers (TLBs) : 缓存,相当于cache

软件看到的所有内存地址都是虚拟的。 这些内存地址被传递到 MMU,它检查最近使用的缓存转换的 TLB。 如果 TLB没有找到最近缓存的翻译,那么翻译单元将从内存中读取适当的一个或多个表项目进行地址翻译,如下所示:

在这里插入图片描述

Translation tables 的工作原理是将虚拟地址空间划分为大小相等的块,并在表中为每个块提供一个entry。
Translation tables 中的entry 0 提供block 0 的映射,entry 1 提供block 1 的映射,依此类推。 每个entry都包含相应物理内存块的地址以及访问物理地址时要使用的属性。

在这里插入图片描述

在当前的ARMV8/ARMV9体系中(暂不考虑armv9的RME扩展), 至少存在以下9类Translation regime:

Secure EL1&0 translation regime, when EL2 is disabled
Non-secure EL1&0 translation regime, when EL2 is disabled
Secure EL1&0 translation regime, when EL2 is enabled
Non-secure EL1&0 translation regime, when EL2 is enabled
Secure EL2&0 translation regime
Non-secure EL2&0 translation regime
Secure EL2 translation regime
Non-secure EL2 translation regime
Secure EL3 translation regime

这9类Translation regime的地址翻译的场景如下图所示:

在这里插入图片描述

Secure and Non-secure地址空间
在REE(linux)和TEE(optee)双系统的环境下,可同时开启两个系统的MMU.
在secure和non-secure中使用不同的页表.secure的页表可以映射non-secure的内存,而non-secure的页表不能去映射secure的内存,否则在转换时会发生错误

在这里插入图片描述

Two Stage Translations
EL1&0 Translation regime处于VM(Virtual Machine)或SP(Secure Partition)时,EL2 enabled的情况下,是需要stage2转换的。对于EL2 Translation regime 和 EL3 Translation regime是没用stage2 转换的。

在这里插入图片描述

四、地址翻译/几级页表?

4.1、思考:页表到底有几级?

从以下图来看,有的页表从L2开始,有得从L1开始,有的从L0开始,还有从L-1开始的,都是到L3终止。
那么我们的页表到底有几级呢?

在这里插入图片描述

4.2、以4KB granule为例,页表的组成方式

在这里插入图片描述

  • 除了第一级index(这里是leve 0 table中的index),每一个查找table/page的index都是9个bit,也就是说除了第一级页表,后面的每一级table都是有512个offset

  • 如果VA_BIT = 39,那么leve 0 table用BIT[38:39]表示,只有1个offset

  • 如果VA_BIT = 48,那么leve 0 table用BIT[47:39]表示,有512个offset

  • 如果VA_BIT > 48,那是不存在的,因为arm规定,大于48的,只有一个,那就是VA_BIT=52,并且规定该情况下的最小granue size=64KB,而我们这里讲述的是granue size=4KB的情况

  • 如果VA_BIT = 32,那么leve 0 table就不用了,TTBR_ELx指向Level 1 table

  • 另外我们还需注意一点,在Level 0 table中,他只能指向D_Table,不能指向D_Block

以下针对虚拟地址是48有效位的情形做了一个总结:

在这里插入图片描述

4.3、optee实际使用的示例

32位有效虚拟地址、,3级页表查询(L1、L2、L3),颗粒的位4KB

在这里插入图片描述

如下展示是optee os的页表结构,TTBR0_EL1指向L1 Table,L1 Table中有4个表项,但只用了3个 , 也就对应着3张L2 Table.

在这里插入图片描述

配置相关的代码如下:

在这里插入图片描述

五、页表格式(Descriptor format)

5.1、ARMV8支持的3种页表格式

  • AArch64 Long Descriptor : 我们只学习这个
  • Armv7-A Long Descriptor : for Large Physical Address Extension (LPAE)
  • Armv7-A Short Descriptor

5.2、AArch64 Long Descriptor支持的四种entry

对于AArch64 Long Descriptor,又分为下面四种entry:

  • An invalid or fault entry.
  • A table entry, that points to the next-level translation table.
  • A block entry, that defines the memory properties for the access.
  • A reserved format

注意:entry[1:0] 表示该entry属于哪类entry, Block Descriptor和Page Descriptor是一个意思。在当前架构中,reserved也是invalid。

在这里插入图片描述

5.3、页表的属性位介绍( Block Descriptor/Page Descriptor )

5.3.1、stage1的页表属性

在这里插入图片描述

(Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors)

  • PBHA, bits[62:59] :for FEAT_HPDS2
  • XN or UXN, bit[54] : Execute-never or Unprivileged execute-never
  • PXN, bit[53] :Privileged execute-never
  • Contiguous, bit[52] : translation table entry 是连续的,可以存在一个TLB Entry中
  • DBM, bit[51] :Dirty Bit Modifier
  • GP, bit[50] :for FEAT_BTI
  • nT, bit[16] :for FEAT_BBM
  • nG, bit[11] :缓存在TLB中的翻译是否使用ASID标识
  • AF, bit[10] : Access flag, AF=0后,第一次访问该页面时,会将该标志置为1. 即暗示第一次访问
  • SH, bits[9:8] :shareable属性
  • AP[2:1], bits[7:6] :Data Access Permissions bits,
  • NS, bit[5] :Non-secure bit
  • AttrIndx[2:0], bits[4:2] :

5.3.2、stage2的页表属性

(Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors)

在这里插入图片描述

  • PBHA[3:1], bits[62:60] :for FEAT_HPDS2

  • PBHA[0], bit[59] :for FEAT_HPDS2

  • XN[1:0], bits[54:53] :Execute-never

  • Contiguous, bit[52] :translation table entry 是连续的,可以存在一个TLB Entry中

  • DBM, bit[51] :Dirty Bit Modifier

  • nT, bit[16] :for FEAT_BBM

  • FnXS, bit[11] :for FEAT_XS

  • AF, bit[10] :Access flag

  • SH, bits[9:8] :shareable属性

  • S2AP, bits[7:6] :Stage 2 data Access Permissions

  • MemAttr, bits[5:2] :

5.3.3、其它标志位的详细介绍

(1)、MemAttr
指向MAIR_ELx寄存器中的attrn属性域,表示内存的缓存属性,如cachable、shareable等

(2)、NS
Non-secure比特 表示转换后的物理地址是secure的还是non-secure的。

(3)、AP
Data access permissions 数据访问权限

在这里插入图片描述

(4)、SH
shareable属性

在这里插入图片描述

(5)、AF
Access flag, AF=0后,第一次访问该页面时,会将该标志置为1. 即暗示第一次访问
(6)、nG
对于 EL0/EL1 虚拟地址空间,Page Descriptor属性字段中的 nG 位将转换标记为Gloabl(G) 或non-Gloabl(nG)。例如,内核映射是Gloabl(G)翻译,应用程序映射是non-Gloabl翻译。Gloabl翻译适用于当前正在运的任何应用程序。非全局翻译仅适用于特定应用程序

non-Gloabl映射在 TLB 中使用 ASID进行标记。在 TLB 查找时,将 TLB 条目中的 ASID 与当前选择的 ASID 进行比较。如果它们不匹配,则不使用TLB 条目。下图显示了内核空间中没有 ASID 标记的全局映射和用户空间中具有 ASID 标记的非全局映射

在这里插入图片描述

(7)、XN or UXN
特权和非特权不可从该memory-region中执行指令的标志位:
Execute-never
Unprivileged execute-never

六、地址翻译指令介绍

address translation的指令大约14个:

在这里插入图片描述

总结一下:

在这里插入图片描述

七、地址翻译相关的系统寄存器总结

地址转换由系统寄存器的组合控制:

7.1 SCTLR_ELx

在这里插入图片描述

系统控制寄存器,控制着MMU、I-cache、D-cache的打开与关闭,也控制着translation table walks访问内存的大小端。

  • M - Enable Memory Management Unit (MMU).

  • C - Enable for data and unified caches.

  • EE - Endianness of translation table walks.

7.2 TTBRn_ELx

在这里插入图片描述

BADDR : 基地址
ASID :TLB entry区分user程序所用的ASID

7.3 TCR_ELx

在ARM Core中(aarch64),有三个Translation Control Register 寄存器:

在这里插入图片描述

在这里插入图片描述

比特位 功能 说明
ORGN1、IRGN1、ORGN0、IRGN0 cacheable属性 outer/inner cableability的属性(如直写模式、回写模式)
SH1、SH0 shareable属性 cache的共享属性配置(如non-shareable, outer/inner shareable)
TG0/TG1 Granule size Granule size(其实就是页面的大小,4k/16k/64k)
IPS 物理地址size 物理地址size,如32bit/36bit/40bit
EPD1、EPD0 - TTBR_EL1/TTBR_EL0的enable和disable
TBI1、TBI0 - top addr是ignore,还是用于MTE的计算
A1 - ASID的选择,是使用TTBR_EL1中的,还是使用TTBR_EL0中的
AS - ASID是使用8bit,还是使用16bit

7.3 MAIR_ELx

内存属性寄存器,分为8个Attrn,所以一个core,最多只支持8中内存属性。
页表中的每一个entry,都会指向一个Attr域。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/447350.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FreeRTOS教程1 基础知识

目录 1、准备材料 2、学习目标 3、前提知识 3.1、FreeRTOS简介 3.2、源码函数命名规律 4、动手创建一个FreeRTOS空工程 4.1、CubeMX相关配置 4.1.1、工程基本配置 4.1.2、时钟树配置 4.1.3、外设参数配置 4.1.4、外设中断配置 4.2、生成代码 4.2.1、配置Project Ma…

AIGC实战——GPT(Generative Pre-trained Transformer)

AIGC实战——GPT 0. 前言1. GPT 简介2. 葡萄酒评论数据集3. 注意力机制3.1 查询、键和值3.2 多头注意力3.3 因果掩码 4. Transformer4.1 Transformer 块4.2 位置编码 5. 训练GPT6. GPT 分析6.1 生成文本6.2 注意力分数 小结系列链接 0. 前言 注意力机制能够用于构建先进的文本…

ubuntu安装使用eigen(vscode)

1、eigen安装 安装命令如下: sudo apt-get update sudo apt-get install libeigen3-dev 默认安装路径为: /usr/include/eigen3 安装版本查询命令: pkg-config --modversion eigen3 2、CMakeLists.txt cmake_minimum_required(VERSION 3.…

21、电源管理入门之芯片设计中的电源管理

目录 1. 关于PCSA和SCP 2. 关于PSCI和SCMI 3. 关于芯片SoC设计中的一些要点 参考: 这里以ARM为例来进行说明,我们在做驱动软件的时候,就需要跟硬件SoC里面的IP打交道,通过操作寄存器来实现硬件功能。之前的文章:ARM SCP入门-AP与SCP通信中3和4章节已经进行了简单介绍,…

[MYSQL数据库]--表的增删查改和字段类型

前言 作者:小蜗牛向前冲 名言:我可以接受失败,但我不能接受放弃 如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、表的增…

LeetCode203:移除链表元素

题目描述 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 解题思想 使用虚拟头节点 代码 struct ListNode {int val;ListNode* next;ListNode() :val(0), next(nullptr) {};ListNode(i…

使用IDEA远程Debug调试

文章目录 背景配置IDEA设置启动脚本改造 细节细节1:停在本地断点,关闭程序后会继续执行吗?细节2:jar包代码和本地不一致会怎么样?细节3:日志打印在哪里?细节4:调试时其他人会不会卡住&#xff…

spring-data-elasticsearch官方文档解读(部分)

Spring Data Elasticsearch 这里主要学习的是4.4.16版本的文档 1. 版本 下表显示了 Spring Data 发行版系列使用的 Elasticsearch 版本和其中包含的 Spring Data Elasticsearch 版本,以及引用该特定 Spring Data 发行版系列的 Spring Boot 版本。给出的 Elastics…

【APP逆向】酒仙网预约茅台程序,包含逆向过程详解

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 所属的专栏:爬虫实战,零基础、进阶教学 景天的主页:景天科技苑 文章目录 酒仙网预约抢购茅台1.抓包分析,账户名和密码登录2.短信登录3.登录+茅台预约 密码登录酒仙网预约抢购茅台 目标:账号登…

MVO-CNN-LSTM多输入时序预测|多元宇宙优化算法-卷积-长短期神经网络时序预测(Matlab)

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、算法介绍: 四、完整程序下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台编译&a…

mysql题库详解

1、如何创建和删除数据库? 创建数据库 CREATE DATABASE 数据库名; 删除数据库 drop database 数据库名; 2、MyISAM与InnoDB的区别? 1)事务:MyISAM 不支持事务 InnoDB 支持 2)行锁/表锁:MyISAM 支持表级锁…

力扣---最小栈

设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。void push(int val) 将元素val推入堆栈。void pop() 删除堆栈顶部的元素。int top() 获取堆栈顶部的元素。int get…

【Redis】RedisTemplate序列化传输数据

使用自定义的序列化器 使用RedisTemplate默认的序列化器发送数据,会将key全都当成Object处理,从而按照对象的方式转成json格式发送到服务器,这样会导致两个问题。一是不方便阅读,二是会大大浪费内存。因此,建议自定义…

js 添加、删除DOM元素

1. js添加、删除DOM元素 1.1. 添加DOM元素 1.1.1. appendChild()方法 该方法添加的元素位于父元素的末尾,使用方法: parentNode.appenChild(NewNode) // parentNode是需要添加元素的容器,NewNode是新添加的元素   创建一个li元素并添加到…

阿里云-零基础入门推荐系统 【多路召回】

文章目录 赛题介绍评价方式理解赛题理解多路召回 代码实战导包读取数据读取文章的基本属性读取文章的Embedding数据调用定义函数获取用户-文章-时间函数获取文章-用户-时间函数获取历史和最后一次点击获取文章属性特征获取用户历史点击的文章信息获取点击次数最多的topk个文章定…

【数据库】软件测试之MySQL数据库面试总结

有表如下: Student 学生表 SC 成绩表 Course 课程表 Teacher 老师表 每个学生可以学习多门课程,每一个课程都有得分,每一门课程都有老师来教,一个老师可以教多个学生 1、查询姓‘朱’的学生名单 select * from Student whe…

直播录屏软件电脑版盘点,哪个才是你的最佳选择?

随着网络直播的兴起,录屏功能逐渐成为了许多用户电脑上的必备工具。无论是为了记录游戏过程、制作教学视频,还是为了保存会议内容,一个易于操作且功能全面的录屏软件都是不可或缺的。那直播录屏软件电脑版都有哪些呢?本文将为大家…

安卓项目:app注册/登录界面设计

目录 第一步:设计视图xml 第二步:编写登录和注册逻辑代码 运行效果展示: 总结: 提前展示项目结构: 第一步:设计视图xml 在layout目录下面创建activity_login.xml和activity_main.xml文件 activity_lo…

GEE错误——Landsat 9 数据集(LANDSAT/LC09/C02/T1_L2)ST_10波段缺少影像问题如何处理

简介 Landat 9的数据集是由卫星传感器记录并传输的。ST_10波段是其中一个波段,但是如果这个波段的影像数据缺失,可能是由于各种原因导致的。 以下是一些可能导致ST_10波段影像数据缺失的原因: 1. 传感器故障:可能是传感器在记录或传输过程中发生了故障,导致无法正确记录…

重要通告 | 公司更名为“浙江实在智能科技有限公司”

更名公告 升级蜕变、砥砺前行 因业务快速发展和战略升级,经相关政府机构批准,自2024年3月1日起,原“杭州实在智能科技有限公司”正式更名为“浙江实在智能科技有限公司”。 更名后,公司统一社会信用代码不变,业务主体…
最新文章