多线程(volatile)

volatile的功能

  1. 保证内存可见性
  2. 禁止指令重排序

内存可见性

简单的理解

两(多)个线程同时针对一个变量进行操作, 一个线程读, 一个线程修改, 此时读到的值不一定是修改过后的值
即读线程没有感知到变量的变化 (其实是 编译器/JVM 对于代码在多线程情况下的优化进行了误判)

从 JMM (Java Memory Model) 角度解释 内存可见性

Java 程序里, 每个线程有自己的工作内存
t1 线程进行读取的时候, 先从主内存读取到工作内存, 再从工作内存中读取值
t2 线程进行修改的值, 先修改自己工作内存中的值, 然后把工作内存的值同步到主内存
由于编译器优化, 导致 t1 没有重新从主内存同步数据到工作内存,读到的结果就是 “修改之前” 的值

这个 “编译器优化”, 就是如果你连续10000次读取值的时候, 如果发现主内存和工作内存中的值没有任何变化, 那么在第10001次读取值的时候, 编译器就不把主内存的数据同步给工作内存了 (同步也是需要消耗资源的…), 而是直接从工作内存读取数据 (编译器默认你第10000次和第10001次的操作是一样的 …)


指令重排序

其实也是编译器优化的误判

比如一段代码中有这样的操作 (List list = new ArrayList<>() ), 可以把将该操作拆分成三个步骤

  1. 申请内存空间
  2. 调用构造方法, 将该内存空间初始化成一个合理的对象
  3. 把内存空间的地址赋值给 list 使用

如果编译器任务按你的代码逻辑 (顺序执行 1->2->3 步)比较, 并且修改代码的执行顺序 (从1->2->3 变成 1->3->2) 并不会影响最终的结果, 那么编译器就会将代码的顺序进行调整.

其实这里本质上是 研究 JVM 的大佬对我们这些菜鸟的帮助 (你写的代码如果太差, 我帮你提提速), 但是在多线程情况下, 可能会产生误判 (顺序改变后如果对代码执行结果有影响呐?), 所以说指令重排序是编译器对于代码优化的误判 … (好心办坏事)


volatile

volatile 解决内存可见性和指令重排序的问题
给变量手动加上 volatile 关键字, 就是告诉编译器, 这个变量是 “易变” 的, 每次使用的时候都要重新读取这个变量的内存内容, 不要随随便便进行优化了

问题代码

class Counter {
    public int count = 0;
}

public class Main{
    public static void main(String[] args) throws InterruptedException {
        Counter counter = new Counter();
        Thread t1 = new Thread(() -> {
            while(counter.count == 0) ;
            System.out.println("counter.count 已被修改");
        });
        Thread t2 = new Thread(() -> {
            Scanner sc = new Scanner(System.in);
            System.out.println("请修改 counter.count 的值");
            counter.count = sc.nextInt();
        });

        t1.start();
        t2.start();
        t1.join();
        t2.join();
    }
}

运行结果

运行之后会发现, 对于 t2 线程中修改 变量 count 的值, 线程 t1 是无感知的, 体现在运行结果上就是死循环一直执行, 程序不会结束

在这里插入图片描述

解决方法

给变量 count 加上关键字 volatile

class Counter {
    volatile public int count = 0;
}

运行结果

运行结果, t1 线程感知到 t2 线程中变量的修改

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/456370.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

景联文科技:提供行业垂直大模型训练数据

近年来&#xff0c;以大模型为代表的人工智能技术已成为国家科技实力竞争的焦点。其中垂直大模型作为重要方向&#xff0c;在相关政策引导及市场需求的驱动下&#xff0c;已展现出较强的发展活力。 行业垂直大模型是针对特定行业的需求和场景进行深度定制的。这意味着模型在训练…

【面试精讲】深克隆和浅克隆的实现方式?深克隆和浅克隆有什么区别?

【面试精讲】深克隆和浅克隆的实现方式&#xff1f;深克隆和浅克隆有什么区别&#xff1f; 目录 本文导读 一、浅克隆&#xff08;Shallow Clone&#xff09; 二、深克隆&#xff08;Deep Clone&#xff09; 1、递归使用clone()方法实现深克隆 2、使用序列化实现深克隆 …

深入解析HashMap:结构与哈希函数揭秘一

文章目录 一、HashMap的基本结构1.数组与链表的结构1.1 数组1.2 链表 2.红黑树的简单介绍3.Node节点的组成 二、HashMap的哈希函数1.hashCode()方法的作用2.位运算与哈希值的计算3.扰动函数的作用 思考&#xff1a;为什么HashMap源码中使用位运算 在Java编程语言中&#xff0c;…

Docker进阶:深入了解 Dockerfile

Docker进阶&#xff1a;深入了解 Dockerfile 一、Dockerfile 概述二、Dockerfile 优点三、Dockerfile 编写规则四、Dockerfile 中常用的指令1、FROM2、LABEL3、RUN4、CMD5、ENTRYPOINT6、COPY7、ADD8、WORKDIR9、 ENV10、EXPOSE11、VOLUME12、USER13、注释14、ONBUILD 命令15、…

解决方案-Windows下cmd输入nvidia-smi命令无效

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 问题描述 nvidia-smi是 NVIDIA System Management Interface 的缩写&#xff0c;是 NVIDIA 提供的用于管理和监控 NVIDIA GPU 设备…

爱普生小体积贴片晶振独特的蚀刻工艺

爱普生EPSON它是全球最大的打印机生产企业也是石英品体元器件生产厂家,品种齐全而且生产工艺也是世界顶尖的企业,不论在制作工艺上还是切割蚀刻工艺技术上都是比较先进的,它的一项千赫兹AT切产品足以让电子行业的人为之钦佩,在2010年发布的全球晶振企业排行榜爱普生占据首位,以…

IDEA管理Git + Gitee 常用操作

文章目录 IDEA管理Git Gitee 常用操作1.Gitee创建代码仓库1.创建仓库1.点击新建仓库2.完成仓库信息填写3.创建成功4.管理菜单可以修改这个项目的设置 2.设置SSH公钥免密登录基本介绍1.找到.ssh目录2.执行指令 ssh-keygen3.将公钥信息添加到码云账户1.点击设置2.ssh公钥3.复制.…

挖到宝了!这几款AI知识库原来这么好用!

随着人工智能的发展&#xff0c;我们的工作和生活越来越依赖这些智能化的工具。其中&#xff0c;AI知识库已经成为我们管理和获取知识的重要工具之一。今天我要为大家推荐三款好用的AI知识库&#xff0c;无论你是企业用户还是个人用户&#xff0c;相信一定能找到你心仪的那一个…

HTML5+CSS3+JS小实例:全屏背景切换动画

实例:全屏背景切换动画 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-s…

英飞凌电源管理PMIC的安全应用

摘要 本篇文档主要用来介绍英飞凌电源管理芯片TLF35584的使用&#xff0c;基于电动助力转向应用来介绍。包含一些安全机制的执行。 TLF35584介绍 TLF35584是英飞凌推出的针对车辆安全应用的电源管理芯片&#xff0c;符合ASIL D安全等级要求&#xff0c;具有高效多电源输出通道&…

Mysql 死锁案例1-记录锁读写冲突

死锁复现 CREATE TABLE t (id int(11) NOT NULL,c int(11) DEFAULT NULL,d int(11) DEFAULT NULL,PRIMARY KEY (id),KEY c (c) ) ENGINEInnoDB DEFAULT CHARSETutf8;/*Data for the table t */insert into t(id,c,d) values (0,0,0),(5,5,5),(10,10,10) 事务1事务2T1 START…

msfconsole数据库连接不了的问题【已解决】

msfconsole数据库连接 1.msf数据库端口 msf使用的是postgresql&#xff0c;这个数据库默认端口是5432 单个模块的使用可以不需要数据库&#xff0c;但是模块与模块之间需要沟通的时候就会用到数据库。 2.查看msf数据库连接状态 db_status #msf内部查看systemctl status p…

基于逻辑回归与决策树的地质灾害预测

大家好&#xff0c;我是带我去滑雪&#xff01; 地质灾害的预测对于人们的生命财产安全、社会稳定和经济发展具有重要意义。地质灾害如地震、泥石流、山体滑坡等往往会造成严重的人员伤亡和财产损失。大规模的地质灾害往往会导致社会秩序混乱、人员流动、灾民避难等问题&#x…

深度学习技巧总结

1、监控GPU使用情况 pip install nvitopnvitop -m fullhttps://zhuanlan.zhihu.com/p/577533593 2、本地拉取服务器上tensorboard数据并进行可视化显示 https://blog.csdn.net/Thebest_jack/article/details/125609849 3、服务器打不开pycharm软件 这个是已经有一个软件在运…

docker部署开源多功能监控系统

HertzBeat 是一个无需 Agent、高性能、易扩展、功能强大的开源实时监控告警系统&#xff0c;无需 Agent、高性能、易扩展、功能强大&#xff0c;由 Dromara 团队开发并开源&#xff0c;能够帮我们轻松监控应用、服务、基础设施等各种资源的运行状况 部署 docker run -d -p 11…

1.Spring核心功能梳理

概述 本篇旨在整体的梳理一下Spring的核心功能,让我们对Spring的整体印象更加具体深刻,为接下来的Spring学习打下基础。 本片主体内容如下: Bean的生命周期依赖注入的实现Bean初始化原理推断构造方法原理AOP的实现这里要说明一下,我们这里说到的Spring,一般指的是Spring F…

rust 正在全面入侵前端

公众号&#xff1a;程序员白特&#xff0c;欢迎一起交流学习~ 原文作者&#xff1a;这波能反杀 过年期间我没怎么发文章&#xff0c;但是我也没闲着。在这个空闲时间&#xff0c;把 rust 基础以及个别生态技术方案扎扎实实的&#xff0c;系统的学习了一下。学习他的初衷是因为 …

5G“升级版”:5G-A正当其时

5G商用五年来&#xff0c;全球5G用户规模已经突破15亿&#xff0c;相当于4G九年的发展成果&#xff1b;同时&#xff0c;5G用20%的全球移动用户占比&#xff0c;贡献了30%的移动流量与40%的移动业务收入。而2月26日-29日在西班牙巴塞罗那举办的世界移动通信大会&#xff08;MWC…

Vue+wow.js+animate.css实现动画效果

1.介绍 Wow.js 是一个轻量级的 JavaScript 库&#xff0c;用于在网页滚动时实现动画效果。基于 CSS3 的动画库 Animate.css&#xff0c;并通过触发 CSS 动画类来创建各种引人注目的过渡和动画效果。 使用 Wow.js&#xff0c;可以很容易地为网页中的元素添加动画效果&#xff…

Redis持久化和集群

redis持久化 RDB方式 Redis Database Backup file (redis数据备份文件), 也被叫做redis数据快照. 简单来说就是把内存中的所有数据记录到磁盘中. 快照文件称为RDB文件, 默认是保存在当前运行目录. [rootcentos-zyw ~]# docker exec -it redis redis-cli 127.0.0.1:6379> sav…
最新文章