学C的第三十天【自定义类型:结构体、枚举、联合】

=========================================================================

相关代码gitee自取:C语言学习日记: 加油努力 (gitee.com)

 =========================================================================

接上期

学C的第二十九天【字符串函数和内存函数的介绍(二)】_高高的胖子的博客-CSDN博客

 =========================================================================

                     

1 . 结构体

(1). 结构体的基础知识:

             

结构一些值的集合,这些值称为成员变量

结构的每个成员可以是不同类型的变量

                     


                    

(2). 结构体的声明:

                

struct tag         

{                        

                member - list;

}variable - lest;

                 

                  

struct  --  结构体标签

tag  --  自定义结构名

 member - list  --  成员列表

variable - lest  --  结构体变量列表

                     

实例:

                     


                    

(3). 特殊的声明:

              

匿名结构体:在声明结构时,可以不完全地声明,即声明时省略掉了结构体标签(tag)

                     

实例:

                     


                    

(4). 结构的自引用:

           

结构中包含一个类型为该结构本身的成员(类似递归?)

                

实例:

                     


                    

(5). 结构体变量的定义和初始化:

                

两种 定义 实例:

                 

两种 初始化 实例:

                 

结构体成员列表包含另一个结构体 实例:

                     


                    

(6). 结构体内存对齐(重点):

              

运用于计算结构体大小

           

           

结构体的对齐规则:

          

1. 第一个成员与结构体变量偏移量为0的地址处

                      

2. 其他成员变量对齐到某个数字(对齐数)整数倍地址处

  • 对齐数 = 编译器默认的一个对齐数该成员大小 两者中的较小值
  • VS中默认的值为8,Linux中没有默认对齐数,对齐数就是成员自身的大小

                     

3. 结构体总大小最大对齐数每个成员变量都有一个对齐数)的整数倍

示例:

                   

4. 如果嵌套了结构体的情况嵌套的结构体对齐到自己的最大对齐数的整数倍处结构体的整体大小就是所有最大对齐数含嵌套结构体的对齐数的整数倍

示例:

           

           

需要内存对齐的原因:

             

(1). 平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;

某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

            

(2). 性能原因:

数据结构(尤其是)应该尽可能地在自然边界上对齐

原因在于,为了访问未对齐的内存处理器需要作两次内存访问

对齐的内存访问仅需要一次访问

           

           

总体来说:

结构体的内存对齐拿空间来换取时间的做法

设计结构体的时候,我们既要满足对齐,又要节省空间

让占用空间小的成员尽量集中在一起

                     


                    

(7). 修改默认对齐数:

                

结构对齐方式不合适的时候,我们可以自己更改默认对齐数

使用 #pragma 预处理指令修改默认对齐数

示例:

                 


                    

(8). 结构体传参:

               

函数传参的时候,参数是需要压栈,有时间和空间上的系统开销

如果传递一个结构体对象的时候结构体过大

参数压栈的的系统开销比较大,会导致性能的下降

所以结构体传参的时候,最好传结构体的地址

示例:

            

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

             

2 . 位段(位域)

(1). 什么是位段:

              

位段的声明和结构体是类似的,

有两个不同:

1.位段的成员必须是 intunsigned intsigned int

2.位段的成员名后边有一个冒号一个数字

            

这个数字指这个成员变量所占的二进制位数

限定该成员变量的空间节省内存

             

位段的大小所有的“数字”相加后所需字节数

如果不够字节存储,则加一个单位的字节

示例:

                     


                    

(2). 位段的内存分配:

                 

  • 位段的成员可以是 int, unsigned int, signed int 或者是 char (属于整形家族)类型
  • 位段的空间上是按照需要以4个字节 int )或者1个字节char )的方式来开辟的。
  • 位段涉及很多不确定因素,位段是不跨平台的注重可移植的程序应该避免使用位段

                     

示例:

                     


                    

(3). 位段的跨平台问题:

             

1. int 位段被当成有符号数还是无符号数不确定的

             

2. 位段中最大位的数目不能确定

16位机器最大1632位机器最大32如果写成27在16位机 器会出问题。)

             

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义

             

4. 当一个结构包含两个位段第二个位段成员比较大无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的

             

总结:

跟结构相比位段可以达到同样的效果,并且可以很好的节省空间

但是有跨平台的问题存在

                     


                    

(4). 位段的运用:

              

网络底层的实现中,

在对数据进行包装时的结构就是使用了位段这种形式来分装的。

           

ip数据包的格式:)

            

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

             

3 . 枚举

枚举顾名思义 一一 列举

把可能的取值列出来 一一 列举

           

比如我们现实生活中:

一周的星期一到星期日是有限的7天可以一一列举

性别有:男、女、保密,也可以一一列举

月份有12个月,可以一一列举

           

这时就可以使用枚举了。

           

(1). 枚举类型的定义:

            

下列示例定义的 enum Color 枚举类型

{}中的内容枚举类型的可能取值,也叫 枚举常量

这些可能取值都是有值的默认从0开始依次递增1

当然在声明枚举类型的时候也可以赋初值

              

示例:

                     


                    

(2). 枚举的优点:

               

我们可以使用 #define 定义常量为什么非要使用枚举

          

枚举的优点:

1. 增加代码的可读性可维护性

2. 和#define定义的标识符比较枚举有类型检查更加严谨

3. 只能拿枚举常量给枚举变量赋值,不会出现类型的差异

3. 便于调试

4. 使用方便一次可以定义多个常量

            

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

             

4 . 联合(共用体)

(1). 联合类型的定义:

        

联合也是一种特殊的自定义类型

这种类型定义的变量包含一系列的成员

特征这些成员公用同一块空间所以联合也叫共用体)。

                     


                    

(2). 联合的特点:

        

联合的成员共用同一块内存空间的,

这样一个联合变量的大小至少是最大成员的大小

,因为联合至少得有能力保存最大的那个成员

              

示例:

(因为联合体成员都共用一个空间,所以同一时间只能使用一个联合体成员

                     


                    

(3). 联合大小的计算:

        

联合的大小至少是最大成员的大小

最大成员大小不是最大对齐数的整数倍候,

要对齐到最大对齐数的整数倍

              

示例:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/46164.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

怎么学习Java网络编程? - 易智编译EaseEditing

学习Java网络编程是掌握Java语言重要的一部分,它使得你能够开发网络应用、客户端/服务器应用以及与远程服务进行交互。以下是学习Java网络编程的一些建议: 学习基本的网络概念: 首先,你需要了解计算机网络的基本概念&#xff0c…

foreverlasting and fried-chicken hdu7293

Problem - 7293 题目大意&#xff1a;给出一个n个点&#xff0c;m条边的图&#xff0c;问其中包含了几个下面这样的子图 1<n<1000; 思路&#xff1a;我们要找两个点u,v&#xff0c;他们至少有4个公共点&#xff0c;且至少有一个点的度数至少为6&#xff0c;其中还要判断…

65英寸OLED透明屏的显示效果出色吗?

65英寸OLED透明屏是一种新型的显示技术&#xff0c;它采用有机发光二极管&#xff08;OLED&#xff09;作为显示元件&#xff0c;具有高亮度、高对比度、快速响应和广视角等优点。 与传统的液晶显示屏相比&#xff0c;OLED透明屏具有更高的透明度和更好的显示效果。 OLED透明屏…

Emacs之改造最快文本搜索工具ripgrep(一百一十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

第三大的数

414、第三大的数 class Solution {public int thirdMax(int[] nums) {Arrays.sort(nums);int tempnums[0];int ansnums[0];int count 0;// if(nums.length<3){// return nums[nums.length-1];// }// else {for(int inums.length-1;i>0;i--){if (nums[i]>nums[i…

嵌入式_GD32看门狗配置

嵌入式_GD32独立看门狗配置与注意事项 文章目录 嵌入式_GD32独立看门狗配置与注意事项前言一、什么是独立看门狗定时器&#xff08;FWDGT&#xff09;二、独立看门狗定时器原理三、独立看门狗定时器配置过程与注意事项总结 前言 使用GD3单片机时&#xff0c;为了提供了更高的安…

Jenkins+Docker 实现一键自动化部署项目

1.安装Jenkins mkdir /docker/jenkins # 新建Jenkins工作目录 docker pull jenkins/jenkins:lts # 拉取Jenkins镜像ls -nd /docker/Jenkins # 查看目录归属ID chown -R 1000:1000 /docker/jenkins # 赋予权限注&#xff1a;因为Jenkins容器里的用户是Jenkins&#xff0c;…

C# Modbus TCP上位机测试

前面说了三菱和西门子PLC的上位机通信&#xff0c;实际在生产应用中&#xff0c;设备会有很多不同的厂家生产的PLC&#xff0c;那么&#xff0c;我们就需要一种通用的语言&#xff0c;进行设备之间的通信&#xff0c;工业上较为广泛使用的语言之一就是Modbus。 Modbus有多种连…

2023年基准Kubernetes报告:6个K8s可靠性失误

云计算日益成为组织构建应用程序和服务的首选目的地。尽管一年来经济不确定性的头条新闻主要集中在通货膨胀增长和银行动荡方面&#xff0c;但大多数组织预计今年的云使用和支出将与计划的相同&#xff08;45%&#xff09;&#xff0c;或高于计划的&#xff08;45%&#xff09;…

MIT 6.830数据库系统 -- lab four

MIT 6.830数据库系统 -- lab four 项目拉取引言事务、锁 & 并发控制事务ACID特性两阶段锁 Recovery and Buffer ManagementGranting Locks(授予锁)练习1 Lock Lifetime练习2 Implementing NO STEAL练习3 事务练习4 死锁和中止练习5 项目拉取 原项目使用ant进行项目构建&am…

微服务系列(1)-who i am?

微服务系列&#xff08;1&#xff09;-我是谁 应用架构的演化 简单来说系统架构可以分为以下几个阶段&#xff1a;复杂的臃肿的单体架构-SOA架构-微服务 单体架构及其所面临的问题 在互联网发展初期&#xff0c;用户数量少&#xff0c;流量小&#xff0c;硬件成本高。因此…

96、Kafka中Zookeeper的作用

Kafka中zk的作用 它是一个分布式协调框架。很好的将消息生产、消息存储、消息消费的过程结合在一起。在典型的Kafka集群中, Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用…

leetcode做题笔记37

编写一个程序&#xff0c;通过填充空格来解决数独问题。 数独的解法需 遵循如下规则&#xff1a; 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。&#xff08;请参考示例图&#xff09; 数独部分…

IDEA导入微服务项目后自动将微服务展示在service面板中

有时候&#xff0c;不会自动将微服务展示在service面板中。 添加service面板&#xff1a; service面板&#xff1a; 更新所有maven&#xff0c;就可以自动将微服务展示在service面板中。

小程序----配置原生内置编译插件支持sass

修改project.config.json配置文件 在 project.config.json 文件中&#xff0c;修改setting 下的 useCompilerPlugins 字段为 ["sass"]&#xff0c; 即可开启工具内置的 sass 编译插件。 目前支持三个编译插件&#xff1a;typescript、less、sass 修改之后可以将原.w…

线程的同步

一、互斥锁 java语言中&#xff0c;引入了对象互斥锁的概念&#xff0c;来保证共享数据操作的完整性。每个对象都对应与一个可称为“互斥锁”的标记&#xff0c;这个标记用来保证在任一时刻&#xff0c;只能有 一个线程访问该对象。关键字synchronized用来与对象的互斥锁联系。…

fpga_pwm呼吸灯(EP4CE6F17C8)

文章目录 一、呼吸灯二、代码实现三、引脚分配 一、呼吸灯 呼吸灯是指灯光在微电脑的控制之下完成由亮到暗的逐渐变化&#xff0c;使用开发板上的四个led灯实现1s间隔的呼吸灯。 二、代码实现 c module pwm_led( input clk ,input rst_n ,output reg [3:0] led ); …

SAP从放弃到入门系列之批次派生-Batch Derivation-Part2

文章目录 一、派生的类型1.1 静态派生1.2 动态派生 二、派生的方向 通过批次派生的基本配置和简单功能的介绍&#xff0c;大家应该对批次派生有一个基本的了解&#xff0c;这篇文章从批次派生的类型和批次派生的方向两个维度更深入的聊一下它的功能。 一、派生的类型 派生的类…

Vue 渲染流程详解

在 Vue 里渲染一块内容&#xff0c;会有以下步骤及流程&#xff1a; 第一步&#xff0c;解析语法&#xff0c;生成AST 第二步&#xff0c;根据AST结果&#xff0c;完成data数据初始化 第三步&#xff0c;根据AST结果和DATA数据绑定情况&#xff0c;生成虚拟DOM 第四步&…

Spring Cloud【为什么需要监控系统、Prometheus环境搭建、Grafana环境搭建 、微服务应用接入监控 】(十七)

目录 全方位的监控告警系统_为什么需要监控系统 全方位的监控告警系统_Prometheus环境搭建 全方位的监控告警系统_Grafana环境搭建 全方位的监控告警系统_微服务应用接入监控 全方位的监控告警系统_为什么需要监控系统 前言 一个服务上线了后&#xff0c;你想知道这个服…