基于粒子群算法的分布式电源配电网重构优化matlab仿真

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

4.1基本PSO算法原理

4.2配电网重构的目标函数

5.完整工程文件


1.课题概述

基于粒子群算法的分布式电源配电网重构优化。通过Matlab仿真,对比优化前后

1.节点的电压值
2.线路的损耗,这里计算网损
3.负荷均衡度
4.电压偏离
5.线路的传输功率
6.重构后和重构前开关变化状态

2.系统仿真结果

1.节点的电压值

  15.0000 + 0.0000i
  14.9761 + 0.0002i
  14.8564 + 0.0014i
  14.8396 + 0.0000i
  14.8257 - 0.0006i
  14.7965 - 0.0093i
  14.7898 - 0.0164i
  14.3003 - 0.3734i
  14.2857 - 0.3291i
  14.2937 - 0.3099i
  14.2968 - 0.3073i
  14.3781 - 0.4659i
  14.3691 - 0.4669i
  14.2306 - 0.2775i
  14.2385 - 0.2765i
  14.2389 - 0.2553i
  14.2331 - 0.2024i
  14.2325 - 0.1839i
  14.9747 - 0.0003i
  14.4088 - 0.4626i
  14.3907 - 0.4526i
  14.4048 - 0.4598i
  14.7643 - 0.0073i
  14.5812 - 0.0374i
  14.4344 - 0.0587i
  14.7945 - 0.0095i
  14.7931 - 0.0096i
  14.3626 - 0.0771i
  14.3669 - 0.0753i
  14.3191 - 0.0713i
  14.2603 - 0.1246i
  14.2465 - 0.1425i
  14.2405 - 0.1634i

2.线路的损耗,这里计算网损
PLoss0 =

  139.9155
PLoss1 =

   56.7952

损耗降低百分比:

ans =

   59.4075

3.负荷均衡度
ans =

    0.0196

4.电压偏离
ans =

   27.8995


5.线路的传输功率
Powers =

   22.5049
   22.5231
   22.5006
   22.5004
   22.5006
   22.5000
   22.9657
   22.5014
   22.5003
   22.5001
   22.5765
   22.5000
   22.5373
   22.5001
   22.5004
   22.5008
   22.5003
   22.5000
   22.6966
   22.5004
   22.5001
   22.5129
   22.5236
   22.5152
   22.5000
   22.5000
   22.6011
   22.5000
   22.5036
   22.5033
   22.5007
   22.5004
   22.5036
   22.5012
   22.5002
   22.5005
   22.5048

6.重构后和重构前开关变化状态
Switch0 =

     7     1     3     2    16


Switch1 =

     2     4     4     4    15


swicths =

     2     4     4     4    15
     3     5     5     5    16

3.核心程序与模型

版本:MATLAB2017B

.............................................................................

figure;
plot(objs,'linewidth',2);
xlabel('迭代次数');
ylabel('适应度值');
grid on


%1、节点的电压值
Node_volgates{indxmin2}
%2、线路的损耗,这里计算网损
%重构前
PLoss0 = Loss0(indxmin_,:) 
%重构后
PLoss1 = min(Loss1)
disp('损耗降低百分比:');
100*abs(PLoss0-PLoss1)/PLoss0

%负荷均衡度,这里均衡采用了方差来计算,值越小,均衡度越高
fobj2(indxmin)

%电压偏离
fobj1(indxmin)



%3、线路的传输功率
case33;
Node_voltage = Node_volgates{indxmin2};
for iii = 1:length(Matrix1)
    Powers(iii,1) =  abs((abs(Node_voltage(Matrix1(iii,2))-Node_voltage(Matrix1(iii,3))))^2/(Matrix1(iii,4))+Rz); 
end
Powers
%4、重构后和重构前开关变化状态
%重构前
Switch0 = Best_pso_(indxmin_,:) 
%重构后
Switch1 = Best_pso(indxmin2,:) 

%5、如果出现故障,及一条线路断开之后开关变化状态
%这里进行断开支路测试
for i = 1:Swicth
    swicths(:,i) = [Matrix1(Switch1(i),2:3)]';
end
swicths
02_054m

4.系统原理简介

         分布式电源配电网重构(Distribution Network Reconfiguration,DNR)是一个重要的电力系统优化问题,旨在通过改变配电网中的开关状态,以最小化网络损耗、提高供电可靠性和优化分布式电源的接入效益。粒子群优化算法(Particle Swarm Optimization, PSO)作为一种启发式全局优化方法,被广泛应用于解决此类复杂优化问题。

4.1基本PSO算法原理

       在PSO中,每个粒子表示配电网重构的一种可能解(即一种开关状态组合),其位置矢量X_i代表第i个粒子所对应的解空间中的解。每个粒子具有速度矢量V_i,用于更新其位置:

  • w是惯性权重,用于平衡全局搜索和局部搜索。
  • c_1 和 c_2 是加速常数,控制个体最优解(P_i)和全局最优解(G_i)对当前粒子的影响。
  • r_1 和 r_2 是随机变量,在[0, 1]之间,用于引入随机性。
  • P_i 是粒子i的历史最优位置(对应最低目标函数值的开关状态组合)。
  • G 是整个种群中的全局最优位置(所有粒子经历过的最优开关状态组合)。

4.2配电网重构的目标函数

       在基于粒子群算法的分布式电源配电网重构优化问题中,目标函数通常结合了多个评价指标以达到综合最优。这里主要考虑以下三个关键因素:

       节点电压偏离(Voltage Deviation) 节点电压偏离反映了配电网络重构后各节点实际电压与额定电压之间的差异。其数学表示通常采用均方误差的形式:

其中,Ui​ 是第 i 个节点的实际电压,Uref​ 是参考电压或额定电压,N 是总节点数。

       线路负荷均衡度(Load Balance Index) 线路负荷均衡度衡量的是整个配电网内各线路负载分布的均匀程度。一种可能的度量方法是计算所有线路负荷与其平均值的标准差:

其中,Pj​ 表示第 j 条线路的功率负荷,ˉPˉ 是所有线路负荷的平均值,M 是线路总数。

        线路损耗(Line Losses) 线路损耗包括电阻损耗和电抗损耗,在考虑分布式电源接入的情况下,需要根据重构后的网络拓扑结构和运行状态计算总的线路损耗:

这里,Rj​ 和Xj​ 分别为第 j 条线路的电阻和感抗,Ij​ 是通过该线路的电流。

将上述三个指标整合成一个复合目标函数,可以采用加权和的方式表达:

       粒子群算法则用于求解此复合目标函数的最小化问题,通过不断迭代更新每个粒子(即潜在的网络重构方案)的位置和速度,最终找到一组最优的开关状态组合。

5.完整工程文件

v

v

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/464871.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【人工智能】英文学习材料01(每日一句)

🌻个人主页:相洋同学 🥇学习在于行动、总结和坚持,共勉! 目录 1.Natural Language Processing,NLP(自然语言处理) 2.Machine Learing,ML(机器学习&#xf…

【开源鸿蒙】模拟运行OpenHarmony轻量系统QEMU RISC-V版

文章目录 一、准备工作1.1 编译输出目录简介 二、QEMU安装2.1 安装依赖2.2 获取源码2.3 编译安装2.4 问题解决 三、用QEMU运行OpenHarmony轻量系统3.1 qemu-run脚本简介3.2 qemu-run脚本参数3.3 qemu-run运行效果3.4 退出QEMU交互模式 四、问题解决五、参考链接 开源鸿蒙坚果派…

【GPT-SOVITS-06】特征工程-HuBert原理

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…

最小化战斗力差距——算法思路

题目链接:1.最小化战斗力差距 - 蓝桥云课 (lanqiao.cn) 可分析,把一个数组分成两组,求一组的最大值与另一组的最小值的差值的绝对值最小,可以转换为求任意两个相邻数字之间的最小插值的绝对值。 可看图示: package lan…

微信小程序Skyline模式自定义tab组件胶囊与原生胶囊平齐,安卓和ios均自适应

进入下面小程序可以体验效果&#xff1a; 至于原理的话&#xff0c;解释起来毕竟麻烦&#xff0c;各位可以看源码自己分析。其实很简单&#xff0c;就算计算布局。很多网上公布的布局&#xff0c;都不能正常自适应。在下这个是完美可以的 1、WXML <view class"weui…

时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解

时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.CEEMDAN方法的分解效果取决于白噪声幅值权重(Nstd)和噪声添…

【tls招新web部分题解】

emowebshell (php7.4.21版本漏洞) 非预期 题目提示webshell&#xff0c;就直接尝试一下常见的后门命名的规则 如 shell.php这里运气比较好&#xff0c;可以直接shell.php就出来 要是不想这样尝试的话&#xff0c;也可以直接dirsearch进行目录爆破 然后在phpinfo中直接搜素c…

【Leetcode-73.矩阵置零】

题目&#xff1a; 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]示例 2&…

Redis学习笔记(基础篇)

Redis基础 1 Redis是什么&#xff1f;1.1 键值型1.2 NoSQL1.2.1 NoSQL与SQL的区别是什么1.2.2 总结 1.3 Redis的特点是什么&#xff1f; 2 Redis怎么用&#xff1f;2.1 Redis的基本命令2.2 Key的层级结构2.3 Redis的基本数据类型有哪些&#xff1f;2.1.1 String类型2.1.2 Hash类…

JavaWeb:vue、AJax、ELement、maven、SpringBoot、、Http、Tomcat、请求响应、分层解耦

1 Vue 1.1 Vue介绍 VUE是前端框架&#xff0c;基于MVVM&#xff0c;实现数据双向绑定 框架是半基础软件&#xff0c;可重用的代码模型 1.2 Vue指令 <script src"js/vue.js"></script></head> <body><div id"id"><!--…

【鸿蒙HarmonyOS开发笔记】常用组件介绍篇 —— 弹窗组件

简介 弹窗是移动应用中常见的一种用户界面元素&#xff0c;常用于显示一些重要的信息、提示用户进行操作或收集用户输入。ArkTS提供了多种内置的弹窗供开发者使用&#xff0c;除此之外还支持自定义弹窗&#xff0c;来满足各种不同的需求。 下面是所有涉及到的弹窗组件官方文档…

边缘计算+WEB端应用融合:AI行为识别智能监控系统搭建指南 -- 云端系统数据库设计(五)

专栏目录 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 – 整体介绍&#xff08;一&#xff09; 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 – 边缘设备图像识别及部署&#xff08;二&#xff09; 边缘计算WEB端应用融合&#xf…

研究生总结

Note:本博客更多是关于自己的感悟&#xff0c;没有翻阅文件详细查证&#xff0c;如果存在错过&#xff0c;也请提出指正。 1. 半监督回归 相比于半监督分类&#xff0c;半监督回归相对冷门。回归和分类之间有着难以逾越的天谴&#xff0c;预测精度。分类中的类别是可数的&…

网络学习:ICMPV6报文

目录 前言&#xff1a; 一、ICMPV6的报文内容 二、ICMPv6差错报文分类 1、目的不可达错误报文&#xff08;type1) 2、数据包过大错误报文(type2) 3、超时报文(type3) 4、参数错误报文 三、ICMPv6信息报文的分类 1、回送请求报文&#xff1a; 2、回送应答报文&#xf…

IDEA系列软件设置自动换行

以pycharm软件为例&#xff0c;我们在编程的时候常常会遇到这种情况&#xff0c;内容过长导致超出pycharm的界面&#xff0c;导致我们阅读浏览起来非常的不方便&#xff0c;对于这种情况&#xff0c;我们可以通过给IDEA软件设置自动换行来解决 首先打开setting&#xff0c;找到…

ElasticSearch:数据的魔法世界

​ 欢迎来到ElasticSearch的奇妙之旅&#xff01;在这个充满魔法的搜索引擎世界中&#xff0c;数据不再是沉闷的数字和字母&#xff0c;而是变得充满活力和灵动。无论你是刚刚踏入数据探索的小白&#xff0c;还是已经对搜索引擎有所了解的行者&#xff0c;本篇博客都将为你揭示…

ThingsBoard Edge 设备控制

文章目录 一、RPC 功能1.服务端 RPC2.客户端 RPC3.MQTT RPC API3.1.服务端RPC3.2.客户端RPC 二、设备控制1.环境准备2.创建设备3.服务端PRC3.1.RPC消息主题3.2.程序源码3.3.创建仪表板3.4.边缘分配仪表板3.5.测试 4.客户端RPC4.1.RPC消息主题4.2.程序源码4.3.规则链4.4.测试 Th…

十四、GPT

在GPT-1之前&#xff0c;传统的 NLP 模型往往使用大量的数据对有监督的模型进行任务相关的模型训练&#xff0c;但是这种有监督学习的任务存在两个缺点&#xff1a;预训练语言模型之GPT 需要大量的标注数据&#xff0c;高质量的标注数据往往很难获得&#xff0c;因为在很多任务…

Qt for Mac阻止MacOS系统休眠

Qt开发的应用程序如果电脑休眠了会影响软件的使用&#xff0c;因此在软件的使用过程中需要防止电脑休眠&#xff0c;在Win上有专门的API进行处理&#xff0c;在Mac上也必需使用Mac平台自身的API&#xff0c;本篇介绍在Mac平台下使用Qt阻止Mac系统休眠。 要调用Mac系统的API&am…

vulhub中GitLab 任意文件读取漏洞复现(CVE-2016-9086)

GitLab是一款Ruby开发的Git项目管理平台。在8.9版本后添加的“导出、导入项目”功能&#xff0c;因为没有处理好压缩包中的软连接&#xff0c;已登录用户可以利用这个功能读取服务器上的任意文件。 环境运行后&#xff0c;访问http://your-ip:8080即可查看GitLab主页&#xff0…