【CNN轻量化】ParameterNet: Parameters Are All You Need 参数就是你所需要的

论文链接:http://arxiv.org/abs/2306.14525
代码链接:https://github.com/huawei-noah/Efficient-AI-Backbones

一、摘要

  现有的低FLOPs模型(轻量化模型)无法从大规模预训练中受益。本文旨在增加大规模视觉预训练模型中的参数数量,同时最大限度地减少FLOPs的增加。利用动态卷积将额外的参数引入网络中,而仅仅带来了FLOPs的轻微增加。ParameterNet方法使得低FLOPs网络能够充分利用大规模视觉预训练。此外,将ParameterNet概念扩展到语言领域,以提高推理结果的同时保持推理速度。在大规模ImageNet-22K上的实验证明了我们ParameterNet方案的优越性。例如,ParameterNet-600M在ImageNet上的准确率比广泛使用的Swin Transformer更高(81.6% vs. 80.9%),而且FLOPs要低得多(0.6G vs. 4.5G)。在语言领域,经ParameterNet增强的LLaMA-1B比原始LLaMA准确率高出2%。

二、关键问题与创新点

1、关键问题

  如下图所示,随着FLOPs的逐渐增加,准确性增加,无论是在ImageNet-1K还是ImageNet-22K的预训练中。对于具有高FLOPs(>10G)的模型,在ImageNet-22K上的预训练优于在ImageNet-1K上的预训练。然而,对于具有较低FLOPs(<4G)的模型,更多数据的预训练并不会提高性能。如图中在ImageNet-22K上预训练的FLOPs小于2G的EfficientNetV2模型无法比在ImageNet-1K上预训练的模型表现更好。

  通过对Transformer和CNN网络的观察,得出了一个经验性结论:低FLOPs模型无法从大规模预训练中受益,这被称为低FLOPs陷阱。

fig2
fig3

2、主要贡献

  • 低FLOPs陷阱,即高FLOPs模型的性能随着更多训练数据而增加,但低FLOPs模型的性能不增加。

  • 提出参数比FLOPs对于大规模视觉预训练更为重要,并进一步引入ParameterNet方案,通过增加更多参数而保持低FLOPs。

  • 提出的ParameterNet方案可以克服低FLOPs陷阱,实验结果表明,在视觉和语言任务中,ParameterNet在大规模预训练中取得了显著更高的性能。

二、理论

  当FLOPs高于5G FLOPs时,基于Transformer的模型在计算成本相似的情况下始终优于CNN。至于更小的模型,特别是在600M FLOPs内的移动级模型,具有局部性和平移等变性的CNN仍然占主导地位。文中选择CNN作为基础模型GhostNet用于视觉任务的高效主干网络,设计原则是在保持低FLOPs的同时增加更多参数。

  引入了参数增强函数,旨在引入更多参数:
W ′ = f ( W ) W^{′} = f(W) W=f(W),
函数 f f f应满足两个基本规则:1)不需要太多的计算成本,2)大幅增加模型的容量或可训练参数。例如动态卷积和重新参数化卷积

1、动态卷积

  文中主要考虑高效的动态卷积(图4中的一种多专家MoE层),它在几乎不增加额外FLOPs的情况下多倍增加了参数数量。
  具有 M M M个动态专家的动态卷积可以写成:
Y = X ∗ W ′ , W ′ = ∑ i = 1 M = α i W i , Y = X * W^{′},W^{′} = \sum_{i=1}^{M} = \alpha_{i} W_{i}, Y=XWW=i=1M=αiWi,
其中 W i ∈ R C o u t × C i n × H × W W_{i} \in R^{Cout×Cin×H×W} WiRCout×Cin×H×W是第i个卷积权重张量, α i \alpha_{i} αi是相应的动态系数。系数 α i \alpha_{i} αi是根据不同的输入样本动态生成的,一种典型的方式是基于输入使用MLP模块生成:
α = s o f t m a x ( M L P ( P o o l ( X ) ) ) , \alpha = softmax(MLP(Pool(X))), α=softmax(MLP(Pool(X))),
其中 α ∈ R M \alpha \in R^{M} αRM。方程式4中的系数生成与原始卷积层相比只带来了可忽略的FLOPs。通过这种方式,使用动态卷积实现的ParameterNet可以大幅增加更多参数,同时最小化FLOPs的增加。
fig4

  对于标准卷积层,参数数量为 C o u t ⋅ C i n ⋅ K ⋅ K C_{out} \cdot C_{in} \cdot K \cdot K CoutCinKK,FLOPs数量为 H ′ ⋅ W ′ ⋅ C o u t ⋅ C i n ⋅ K ⋅ K H^{′} \cdot W^{′} \cdot C_{out} \cdot C_{in} \cdot K \cdot K HWCoutCinKK。动态卷积包括系数生成模块、动态权重融合和卷积过程。具有 C i n C_{in} Cin个隐藏维度的系数生成模块需要 C i n 2 + C i n M C^{2}_{in} + C_{in} M Cin2+CinM个参数和 C i n 2 + C i n M C^{2}_{in} + C_{in} M Cin2+CinM个FLOPs。动态权重融合是无参数的,具有 M ⋅ C o u t ⋅ C i n ⋅ K ⋅ K M \cdot C_{out} \cdot C_{in} \cdot K \cdot K MCoutCinKK个FLOPs。因此,动态卷积的总参数和FLOPs数量分别为
C i n 2 + C i n M + M ⋅ C o u t ⋅ C i n ⋅ K ⋅ K C^{2}_{in} + C_{in} M + M \cdot C_{out} \cdot C_{in} \cdot K \cdot K Cin2+CinM+MCoutCinKK C i n 2 + C i n M + M ⋅ C o u t ⋅ C i n ⋅ K ⋅ K + H ′ ⋅ W ′ ⋅ C o u t ⋅ C i n ⋅ K ⋅ K C^{2}_{in} + C_{in} M + M \cdot C_{out} \cdot C_{in} \cdot K \cdot K + H^{′} \cdot W^{′} \cdot C_{out} \cdot C_{in} \cdot K \cdot K Cin2+CinM+MCoutCinKK+HWCoutCinKK

  动态卷积相对于标准卷积的参数比率为:
R p a r a m = C i n 2 + C i n M + M C o u t C i n K 2 C o u t C i n K K = C i n C o u t K 2 + M C o u t K 2 + M ≈ 1 K 2 + M . ( M ≪ C o u t K 2 , C i n ≈ C o u t R_{param} = \frac{C_{in}^{2} + C_{in}M + M C_{out} C_{in} K^{2}}{C_{out} C_{in} K K} = \frac{C_{in}}{C_{out} K^{2}} + \frac{M}{C_{out} K ^{2}} + M \approx \frac{1}{K^{2}} + M.(M ≪ C_{out} K^{2},C_{in} \approx C_{out} Rparam=CoutCinKKCin2+CinM+MCoutCinK2=CoutK2Cin+CoutK2M+MK21+M.MCoutK2CinCout
  FLOPs比率为:
R f l o p s = C i n 2 + C i n M + M C o u t C i n K 2 + H ′ W ′ C o u t C i n K 2 H ′ W ′ C o u t C i n K 2 = C i n H ′ W ′ C o u t C i n K 2 + M H ′ W ′ C o u t C i n K 2 + M H ′ W ′ + 1 ≈ 1. ( 1 < M ≪ H ′ W ′ , C i n ≈ C o u t R_{flops} = \frac{C_{in}^{2} + C_{in} M + M C_{out} C_{in} K^{2} + H^{′} W^{′} C_{out} C_{in} K^{2}}{H^{′} W^{′} C_{out} C_{in} K^{2}} = \frac{C_{in}}{H^{′} W^{′} C_{out} C_{in} K^{2}} + \frac{M}{H^{′} W^{′} C_{out} C_{in} K^{2}} + \frac{M}{H^{′} W^{′}} + 1 \approx 1.(1 < M ≪ H^{′} W^{′},C_{in} \approx C_{out} Rflops=HWCoutCinK2Cin2+CinM+MCoutCinK2+HWCoutCinK2=HWCoutCinK2Cin+HWCoutCinK2M+HWM+11.1<MHWCinCout

  因此,与标准卷积相比,动态卷积具有大约M倍的参数,而额外的FLOPs可以忽略不计。

2、将ParameterNet扩展到语言领域

  稀疏激活的专家混合(MoE)模型最初在自然语言处理领域引入,允许在保持每个标记或样本的计算负载不变的情况下大幅增加参数数量。许多后续研究深入探讨了高效的路由机制,并展示了MoE在各种大型语言模型(LLM)中的有效性,如T5[38]、NLLB[26]、LLaMA[54]和Palm[8]。在这种情况下,重点主要是低FLOPs语言模型,以验证提出的假设,即合并更多参数可以增强大规模预训练对低FLOPs模型的好处,文中按比例减少并构建一个缩减版本LLaMA-1B

  与MoE类似,获取一个标记表示 x x x,然后将其路由到从一组N个确定的专家中确定的前k个专家。路由器模块生成表示为 h ( x ) = s o f t m a x ( r o u t e r ( x ) ) h(x) = softmax(router(x)) h(x)=softmax(router(x))的逻辑值logits,通过softmax函数在该特定层上的N个可用专家之间创建一个归一化分布。然后选择前k个专家(在实验中 k = 1 k = 1 k=1)来路由标记 x x x。专家容量上的训练损失(每个专家计算的标记数量)遵循Switch Transformer[12]中的设置。

三、实验

1、数据集和设置

  采用ImageNet-22K进行大规模预训练,并使用ImageNet-1K作为正常训练数据进行比较。

  • ImageNet-22K是一个包含14,197,122张图片,属于21841个类别的大规模图像数据集。ImageNet-1K是ImageNet-22K的一个子集,包含1000个对象类别。其中包含1,281,167张训练图片和50,000张验证图片。

  • 在ImageNet-1K上训练。按照常见设置,使用AdamW优化器对模型进行300个epoch的训练,其中包括20个warm up。使用批量大小为1024。基础学习率设置为0.001,并按照余弦调度进行衰减。

  • 数据增强策略包括RandAugment和随机擦除。采用权重衰减和标签平滑进行正则化。更多细节在表1。

  在ImageNet-22K上预训练的模型有ImageNet-22K 25.6M 12.0G 80.0 , EfficientNetV2-B0 ImageNet-22K 7.1M 0.72G 77.6 , EfficientNetV2-B1 ImageNet-22K 8.1M 1.2G 79.0 , Swin-T ImageNet-22K 28M 4.5G 80.9 . GhostNet-600M模型在ImageNet-22K上进行90个epoch的预训练,其中包括5个热身epoch。批量大小为4096,基础学习率设置为0.004。其他设置基本遵循ImageNet-1K上的设置如表1。

  在ImageNet-1K上微调:在ImageNet-1K上对预训练模型进行30个epoch的微调,不包括warm up。批量大小为512,基础学习率设置为0.0005。权重衰减设置为1e-8,并关闭随机擦除以更好地适应ImageNet-1K。其他设置基本遵循ImageNet-1K上的设置,如表1所示。

table1

table2

2、ParameterNet(约300MFLOPs和约600MFLOPs)

  通过调整宽度和深度构建了基准GhostNet,其具有不同的FLOPs(约300M和约600M)。ParameterNet是通过用动态卷积替换传统卷积层构建的。默认情况下,专家数量设置为4。网络架构的详细信息可在附录中找到。结果如表2所示。仅在ImageNet-1K上训练,ParameterNet的性能优于原始GhostNet约0.4-xx的准确率。对于GhostNet,仅在ImageNet-22K上进行预训练并不能提高性能。在ImageNet-22K上预训练的ParameterNet可以比ImageNet-1K获得超过2%的改进。这表明我们的ParameterNet具有更多参数但类似FLOPs的优势,可以从大规模视觉预训练中受益。

  与SOTA的比较。文中将ParameterNet与其他在ImageNet-22K或更大数据集(如JFT-300M 和IG-1B-Targeted)上预训练的代表模型进行比较。从表3的结果可以看出,ParameterNet在拥有更少FLOPs的情况下胜过其他在大规模数据集上预训练的模型。例如,ParameterNet-600M实现了81.6%的top-1准确率,其FLOPs约为ResNet50或Swin-T的1/7。

  推理速度:我们评估了ParameterNet和其他代表模型的推理速度以进行比较。我们在Intel Xeon上使用ONNX工具包运行模型,如图5所示。

table3
fig5

3、消融实验

(1) 动态专家的数量。

  动态卷积的动态专家数量是动态卷积的一个重要超参数,直接控制参数和FLOPs。如表4所示,更多的专家将大幅增加参数数量,稍微影响FLOPs。更多专家的性能优于较少专家。我们默认使用4个专家以进行效率权衡。

请添加图片描述

(2) 动态卷积与重新参数化卷积。

  正如之前讨论的,有各种方法来构建ParameterNet,例如动态卷积和重新参数化卷积。比较这两种方法,其中动态卷积有4个专家,重新参数化卷积在原始卷积基础上增加了3个并行分支。从表6的结果来看,尽管重新参数化卷积增加了训练参数,但其参数和FLOPs在推断时保持不变,即模型容量没有增加,ImageNet-22K预训练性能也没有提高。

table6

(3) 其他网络架构的ParameterNet

  除了CNN,将ParameterNet扩展到Transformer架构(即Swin Transformer)。为构建一个较小版本,将Swin-T的token维度设置为24,得到大约300M FLOPs的Swin-300M。从表5的结果来看,原始的Swin-300M在对ImageNet-22K进行预训练时有显著的准确率下降。我们的策略可以从ImageNet-22K预训练中获得+2.2%的性能提升。

table5

4、语言领域

  训练数据集是由几个来源混合而成,包括C4 [39]、维基百科 [54] 和 ArXiv [31]。这些数据都是公开可用的,直接混合它们而没有进行任何质量过滤。总体而言,训练数据集的网络架构。通过按比例减少原始 LLaMA [54] 的维度和层数来构建基准 LLaMA-1B,如表8所示。具体来说,隐藏大小、中间大小、头数和层数分别为2048、8191、16和12。分词器与 LLaMA 相同。结果和分析。按照之前的工作[2],在几个常识推理任务上呈现相应的训练损失和零样本结果,其中模型对提出的答案进行排名。FLOPs 是在输出响应长度设置为1的情况下计算的。路由器模块采用线性层实现,输入通道为隐藏大小,输出通道等于专家数量。如表7所示,我们观察到更多的专家为基线模型带来了额外的参数,从而显著提高了下游性能。例如,在上投影层上具有8个专家的 LLaMA-1B 平均获得了2.37% 的准确率提升。此外,增加的参数有助于减少训练损失,表明通过将 ParameterNet 引入语言模型,可以增强对输入数据的理解。此外,实验结果表明,LLaMA 的 FFN 中的三个线性投影具有类似的效果。

table7
table8

四、总结

  ParameterNet是一种通用方法,有各种实现方法,如动态卷积和重新参数化卷积。在实验中使用动态卷积来构建ParameterNet模型。ParameterNet能够克服低FLOPs的缺陷,并从大规模视觉预训练中获益良多。在ImageNet-22K大规模数据集上的实验证明了所提出的ParameterNet的有效性,文中还验证了我们的方法在语言领域的泛化能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/472753.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

程序员的最佳副业居然是炒股

前言 之前的文章 《程序员的最佳副业居然是这个》讲述了个人的副业选择&#xff0c;和各种做过的副业。最后选择了炒股。那么究竟是否能够在股市里赚到利润呢&#xff1f;以我个人最近的交易记录来看&#xff0c;答案是肯定的。 一个半月赚取了 2898 程序员投资的优势 程序…

netty基础_12.用 Netty 自己实现简单的RPC

用 Netty 自己实现简单的RPC RPC 基本介绍我们的RPC 调用流程图己实现 Dubbo RPC&#xff08;基于 Netty&#xff09;需求说明设计说明代码封装的RPCNettyServerNettyServerHandlerNettyClientHandlerNettyClient 接口服务端(provider)HelloServiceImplServerBootstrap 客户端(…

概率基础——逻辑回归多分类法

概率基础——逻辑回归多分类法 逻辑回归是一种经典的分类算法&#xff0c;通常用于解决二分类问题。然而&#xff0c;在实际应用中&#xff0c;我们经常会遇到多分类任务。本文将简单介绍逻辑回归的理论、多分类方法以及优缺点&#xff0c;并提供一个Python实现的示例。 逻辑…

【MySQL】图形化界面工具DataGrip安装&配置&使用

前言 大家好吖&#xff0c;欢迎来到 YY 滴MySQL系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C Linux的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的…

npm出现内部错误,重新设置镜像

问题&#xff1a; 报错解释&#xff1a; 这个错误表明你尝试从一个指定的npm镜像源的响应时失败了。可能的原因包括网络问题、镜像源不可用、DNS解析问题或者镜像源的确已经下线或更改。 1.重新设置镜像源 设置淘宝镜像源&#xff1a; npm config set registry https://re…

网络面试——http 和 https 的区别

区别&#xff1a; 1. HTTP 是超文本传输协议&#xff0c;信息是明文传输&#xff0c;HTTPS 是具有安全性的 SSL 加密传输协议。HTTPS 是由 SSL HTTP 协议构建的可进行加密传输、身份认证的网络协议&#xff0c;比 HTTP 协议安全 2. 端口号&#xff1a;http 使用 80 端口&#…

ros小问题之差速轮式机器人轮子不显示(rviz gazebo)

在rviz及gazebo练习差速轮式机器人时&#xff0c;很奇怪&#xff0c;只有个机器人的底板及底部的两个万向轮&#xff0c;如下图&#xff0c; 后来查看相关.xacro文件&#xff0c;里面是引用包含了轮子的xacro文件&#xff0c;只需传入不同的参数即可调用生成不同位置的轮子&…

代码学习第24天----回溯算法

随想录日记part24 t i m e &#xff1a; time&#xff1a; time&#xff1a; 2024.03.10 主要内容&#xff1a;回溯算法在代码学习中尤其重要&#xff0c;所以今天继续加深对其的理解&#xff1a;1&#xff1a;递增子序列 &#xff1b;2.全排列 &#xff1b;3.全排列II 491.递…

MySQL基础-----事务(下)

目录 前言 一、并发事务问题 1.赃读 2.不可重复读 3.幻读 二、事务隔离级别 1.相关操作 2.案例演示 前言 本期我们继续上一期事务的内容&#xff0c;本期的主要讲解的是并发事务的相关问题以及解决方式&#xff0c;内容可能会比较难去理解&#xff0c;不过我会尽量详细说…

C++ UML类图

参考文章&#xff1a; &#xff08;1&#xff09;C UML类图详解 &#xff08;2&#xff09;C基础——用C实例理解UML类图 &#xff08;3&#xff09;C设计模式——UML类图 &#xff08;4&#xff09;[UML] 类图介绍 —— 程序员&#xff08;灵魂画手&#xff09;必备画图技能之…

31.HarmonyOS App(JAVA)鸿蒙系统app Service服务的用法

鸿蒙系统app Service服务的用法 后台任务调度和管控 HarmonyOS将应用的资源使用生命周期划分为前台、后台和挂起三个阶段。前台运行不受资源调度的约束&#xff0c;后台会根据应用业务的具体任务情况进行资源使用管理&#xff0c;在挂起状态时&#xff0c;会对应用的资源使用进…

《C语言深度剖析》---------关键字(1)

1.双击实质--->加载内存 windows系统里面&#xff0c;双击的本质就是运行程序&#xff0c;把程序加载到内存里面&#xff1b; 任何程序运行的时候都必须加载到内存里面&#xff1b; 程序没有运行之前在硬盘里面&#xff0c;为什么程序运行之前必须加载到内存里面呢&#…

Spring Web MVC入门(5)

响应 在我们前面的代码例子中, 都已经设置了响应数据Http响应结果可以是数据, 也可以是静态页面, 也可以针对响应设置状态码, Header信息等. 返回静态页面 创建前端页面index.html(注意路径) html代码如下: <!DOCTYPE html> <html lang"en"> <hea…

Nutanix 国产化替代|一文了解 SmartX 超融合替代可行性与迁移方案

2022 年 8 月 19 日&#xff0c;Nutanix&#xff08;路坦力&#xff09;宣布中国市场自 2023 财年起将转型为合作伙伴销售主导模式&#xff0c;引起了广泛关注&#xff1b;同时结合当前 IT 基础架构的国产化趋势背景&#xff0c;不少正在使用和考虑使用 Nutanix 产品的企业开始…

Vue 中预加载组件

在 Vue 中&#xff0c;利用 VueRouter 可以轻松的实现两个组件&#xff08;页面&#xff09;之间的切换&#xff0c;有个常用的设计就是需要在登录页登录后跳转至一个内容页&#xff0c;通常的做法是在登录校验完成之后立即切换路由至内容页&#xff0c;接着内容页发送网络请求…

极简生活|2024年让自己越来越好的18个极简好习惯

哈喽&#xff0c;你好啊&#xff0c;我是雷工&#xff01; 转眼间已经进入了2024年&#xff0c;新的一年&#xff0c;新的开始。 俗话说&#xff1a;百尺高台起于垒土&#xff0c;千里之堤毁于蚁穴。 好习惯积累的越多&#xff0c;坏习惯越来越少&#xff0c;我们的生活才能越…

Iterator对象功能学习

package config;import java.util.Iterator; import java.util.Properties; import java.util.Set;/*** 这个类演示了如何使用Properties类来存储和访问键值对。* Properties类继承自Hashtable&#xff0c;因此它可以用来存储键值对数据&#xff0c;且支持同步。*/ public clas…

MySQL介绍

一、MySQL数据库介绍 1、发展史 1996年 MySQL1.0 2008年1月16日 Sun公司收购了 MySQL 2009年4月20日 Oracle收购了Sun公司 MySQL是一种开放源代码的关系型数据库管理系统 使用最常用的数据库管理语言 SQL&#xff08;结构化查询语言&#xff09; MySQL是开放源代码的 因此所有…

基于Springboot的员工健康管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的员工健康管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

【c++】c++基本语法知识-命名空间-输入输出-缺省参数

主页&#xff1a;醋溜马桶圈-CSDN博客 专栏&#xff1a;c_醋溜马桶圈的博客-CSDN博客 gitee&#xff1a;mnxcc (mnxcc) - Gitee.com 目录 1.命名空间 1.2 命名空间定义 1.3 命名空间使用 命名空间的三种使用方式 2.C输入&输出 std命名空间的使用惯例 3.缺省参数 3…
最新文章