C++进阶之路---C++11相关特性 | 左值引用 | 右值引用 | 完美转发

顾得泉:个人主页

个人专栏:《Linux操作系统》 《C++从入门到精通》  《LeedCode刷题》

键盘敲烂,年薪百万!


一、C++11简介

       在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了C++98称为C++11之前的最新C++标准名称。不过由于C++03(TC1)主要是对C++98标准中的漏洞进行修复,语言的核心部分则没有改动。因此人们习惯性的把两个标准合并称为C++98/03标准。从C++0x到C++11,C++标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于C++98/03,C++11则带来了数量可观的变化,其中包含了约140个新特性,以及对C++03标准中约600个缺陷的修正,这使得C++11更像是从C++98/03中孕育出的一种新语言。

       相比较而言,C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多,所以我们要作为一个重点去学习。

命名小故事:

        1998年是C++标准委员会成立的第一年,本来计划以后每5年视实际需要更新一次标准,C++国际标准委员会在研究C++03的下一个版本的时候,一开始计划是2007年发布,所以最初这个标准叫C++07。但是到06年的时候,官方觉得2007年肯定完不成C++07,而且官方觉得2008年可能也完不成。像泉一样“直接摆烂” ,最后干脆叫C++Ox。x的意思是不知道到底能在07还是08还是09年完成。结果2010年的时候也没完成,最后在2011年终于完成了C++标准。所以最终定名为C++11。


二、列表初始化 

1.{ }初始化

       在C++98中,标准允许使用花括号f对数组或者结构体元素进行统一的列表初始值设定。比如:

struct Point
{
     int _x;
     int _y;
};
int main()
{
     int array1[] = { 1, 2, 3, 4, 5 };
     int array2[5] = { 0 };
     Point p = { 1, 2 };
     return 0;
}

       C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户定义的类型,使用初始化列表时,可添加等号(=),也可不添加

       创建对象时也可以使用列表初始化方式调用构造函数初始化。

class Date
{
public:
	Date(int year, int month, int day)
		:_year(year)
		, _month(month)
		, _day(day)
	{
		cout << "Date(int year, int month, int day)" << endl;
	}
private:
	int _year;
	int _month;
	int _day;
};

int main()
{
	Date d1(2022, 1, 1); // old style
	// C++11支持的列表初始化,这里会调用构造函数初始化
	Date d2{ 2022, 1, 2 };
	Date d3 = { 2022, 1, 3 };
	return 0;
}

2.std::initializer_list

std::initializer_list是什么类型,先看一下这段代码:

int main()
{
	// the type of il is an initializer_list 
	auto il = { 10, 20, 30 };
	cout << typeid(il).name() << endl;
	return 0;
}

       std::initializer_list是C++11引入的一种特殊类型,用于简化初始化列表的语法。它是一个模板类,用于表示一个初始化列表,可以包含多个元素,并且元素的类型可以是任意的。通过使用std::initializer_list,我们可以方便地将一组值作为参数传递给函数或者构造函数。

std::initializer_list提供了以下几个重要的成员函数:

       begin()和end():用于返回指向初始化列表中第一个元素和最后一个元素之后位置的迭代器。

       size():返回初始化列表中元素的个数。

       std:initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加

       std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator=的参数,这样就可以用大括号赋值。

int main()
{
	vector<int> v = { 1,2,3,4 };
	list<int> lt = { 1,2 };
	// 这里{"sort", "排序"}会先初始化构造一个pair对象
	map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
	// 使用大括号对容器赋值
	v = { 10, 20, 30 };
	return 0;
}


三、左值引用和右值引用

       传统的C++语法中就有引用的语法,而C++11中新增了的右值引用语法特性,所以从现在开始我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名。

1.左值与左值引用

       左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址+可以对它赋值,左值可以出现赋值符号的左边,右值不能出现在赋值符号左边。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。

       左值引用就是给左值的引用,给左值取别名。

int main()
{
	// 以下的p、b、c、*p都是左值
	int* p = new int(0);
	int b = 1;
	const int c = 2;
	// 以下几个是对上面左值的左值引用
	int*& rp = p;
	int& rb = b;
	const int& rc = c;
	int& pvalue = *p;
	return 0;
}

2.右值与右值引用

       右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值(这个不能是左值引用返回)等等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。右值引用就是对右值的引用,给右值取别名。

int main()
{
	double x = 1.1, y = 2.2;
	// 以下几个都是常见的右值
	10;
	x + y;
	fmin(x, y);
	// 以下几个都是对右值的右值引用
	int&& rr1 = 10;
	double&& rr2 = x + y;
	double&& rr3 = fmin(x, y);
	// 这里编译会报错:error C2106: “=”: 左操作数必须为左值
	10 = 1;
	x + y = 1;
	fmin(x, y) = 1;
	return 0;
}

       需要注意的是右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可以取到该位置的地址,也就是说例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地址,也可以修改rr1。如果不想rr1被修改,可以用const int&& rr1去引用,是不是感觉很神奇,这个了解一下实际中右值引用的使用场景并不在于此,这个特性也不重要。

3.左值引用与右值引用比较

左值引用总结:

       1.左值引用只能引用左值,不能引用右值。

       2.但是const左值引用既可引用左值,也可引用右值。

int main()
{
	// 左值引用只能引用左值,不能引用右值。
	int a = 10;
	int& ra1 = a;
	// ra为a的别名
	//int& ra2 = 10;   // 编译失败,因为10是右值
	// const左值引用既可引用左值,也可引用右值。
	const int& ra3 = 10;
	const int& ra4 = a;
	return 0;
}


右值引用总结:

       1.右值引用只能右值,不能引用左值。

       2.但是右值引用可以move以后的左值。

int main()
{
	// 右值引用只能右值,不能引用左值。
	int&& r1 = 10;
	// error C2440: “初始化”: 无法从“int”转换为“int &&”
	// message : 无法将左值绑定到右值引用
	int a = 10;
	int&& r2 = a;
	// 右值引用可以引用move以后的左值
	int&& r3 = std::move(a);
	return 0;
}


四、完美转发

       完美转发(perfect forwarding)是指在函数模板中,将参数以原始类型(包括引用和常量修饰)的形式传递给其他函数,并保持参数的值和类型不变。

       在C++中,当我们使用模板函数时,有时候我们希望将参数原封不动地传递给其他函数,而不改变其类型和值。但是在普通的函数模板中,传递参数时可能会发生隐式类型转换或者参数被推导为引用类型而丧失其原始类型的信息,导致无法达到完美转发的效果。

       为了解决这个问题,C++11引入了新的特性:转发引用(forwarding reference,也称为右值引用折叠),通过使用完美转发和std::forward来实现。

void Fun(int& x) { cout << "左值引用" << endl; }
void Fun(const int& x) { cout << "const 左值引用" << endl; }
void Fun(int&& x) { cout << "右值引用" << endl; }
void Fun(const int&& x) { cout << "const 右值引用" << endl; }

template<typename T>
void PerfectForward(T&& t)
{
	Fun(t);
}
int main()
{
	PerfectForward(10);
	int a;
	PerfectForward(a);
	// 右值
	// 左值
	PerfectForward(std::move(a)); // 右值
	const int b = 8;
	PerfectForward(b);
	// const 左值
	PerfectForward(std::move(b)); // const 右值
	return 0;
}

       模板中的&&不代表右值引用,而是万能引用,其既能接收左值又能接收右值。模板的万能引用只是提供了能够接收同时接收左值引用和右值引用的能力,但是引用类型的唯一作用就是限制了接收的类型,后续使用中都退化成了左值,我们希望能够在传递过程中保持它的左值或者右值的属性, 就需要用我们下面学习的完美转发。

std::forward完美转发在传参的过程中保留对象原生类型属性

void Fun(int& x) { cout << "左值引用" << endl; }
void Fun(const int& x) { cout << "const 左值引用" << endl; }
void Fun(int &&x){ cout << "右值引用" << endl; }
void Fun(const int &&x){ cout << "const 右值引用" << endl; }
// std::forward<T>(t)在传参的过程中保持了t的原生类型属性。
template<typename T>
 void PerfectForward(T&& t)
 {
 Fun(std::forward<T>(t));
 }
int main()
{
	PerfectForward(10);
	int a;
	PerfectForward(a);
	// 左值
	PerfectForward(std::move(a)); // 右值
	const int b = 8;
	PerfectForward(b);
	// 右值
	// const 左值
	PerfectForward(std::move(b)); // const 右值

	return 0;
}

完美转发实际中的使用场景:

template<class T>
struct ListNode
{
	ListNode* _next = nullptr;
	ListNode* _prev = nullptr;
	T _data;
};
template<class T>
class List
{
	typedef ListNode<T> Node;
public:
	List()
	{
		_head = new Node;
		_head->_next = _head;
		_head->_prev = _head;
	}
	void PushBack(T&& x)
	{
		//Insert(_head, x);
		Insert(_head, std::forward<T>(x));
	}
	void PushFront(T&& x)
	{
		//Insert(_head->_next, x);
		Insert(_head->_next, std::forward<T>(x));
	}

	void Insert(Node* pos, T&& x)
	{
		Node* prev = pos->_prev;
		Node* newnode = new Node;
		newnode->_data = std::forward<T>(x); // 关键位置
		// prev newnode pos
		prev->_next = newnode;
		newnode->_prev = prev;
		newnode->_next = pos;
		pos->_prev = newnode;
	}

	void Insert(Node * pos, const T & x)
	{
		Node* prev = pos->_prev;
		Node* newnode = new Node;
		newnode->_data = x; // 关键位置
	   // prev newnode pos
		prev->_next = newnode;
		newnode->_prev = prev;
		newnode->_next = pos;
		pos->_prev = newnode;
	}
	private:
		Node* _head;
};
int main()
{
	List<string> lt;
	lt.PushBack("1111");
	lt.PushFront("2222");
	return 0;
}


结语:关于本次C++特性的梳理到这里就结束了,希望本篇文章的分享会对大家的学习带来些许帮助,如果大家有什么问题,欢迎大家在评论区留言~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/481990.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络工程师之路由交换试题篇

网络工程师之路由交换试题篇 试题练习知识点练习方案设计案例一 试题练习 知识点练习 1.局域网和广域网的特点。 2.常见的网络拓扑类型有哪些&#xff0c;简述特点。 3.常见的传输介质有哪些&#xff0c;光纤连接器种类有哪些&#xff0c; 4.VRP系统视图中&#xff0c;用户访…

pcl 凸包ConvexHull

pcl 凸包ConvexHull 头文件等 #include <pcl/surface/convex_hull.h>typedef pcl::PointXYZ PointT; typedef pcl::PointCloud<PointT> CloudT; typedef CloudT::Ptr CP 代码 CP PSO::tubao(CP cloud) {pcl::ConvexHull<PointT> hull;hull.setInputCloud…

Redis入门到实战-第三弹

Redis入门到实战 Redis数据类型官网地址Redis概述Redis数据类型介绍更新计划 Redis数据类型 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://redis.io/Redis概述 Redis是一个开源的&#xff08;采用BSD许可证&#…

【Mysql数据库基础03】分组函数(聚合函数)、分组查询

分组函数(聚合函数&#xff09;、分组查询 0 该博客所要用的数据库表的属性1 分组函数1.1 简单的使用1.2 是否忽略null值1.3 和关键字搭配使用1.4 count函数的详细介绍1.5 练习 2 分组查询Group by2.1 简单的分组查询2.2 练习 3 格式投票:yum: 0 该博客所要用的数据库表的属性 …

树,二叉树与堆

这里写目录标题 树树的概念树的相关概念树的表示 二叉树二叉树的概念满二叉树与完全二叉树二叉树的重要性质二叉树的存储结构 堆二叉树的顺序存储堆的概念堆的实现堆插入和删除数据 树 树的概念 树的概念&#xff1a; 树是一种非线性的数据结构&#xff0c;它是由n&#xff08…

Teable——强大的在线数据电子表格

公众号&#xff1a;【可乐前端】&#xff0c;每天3分钟学习一个优秀的开源项目&#xff0c;分享web面试与实战知识&#xff0c;也有全栈交流学习摸鱼群&#xff0c;期待您的关注! 每天3分钟开源 hi&#xff0c;这里是每天3分钟开源&#xff0c;很高兴又跟大家见面了&#xff0…

在线获取文本列表并集计算器

具体请前往&#xff1a;在线文本并集计算工具

基于STC12C5A60S2系列1T 8051单片机可编程计数阵列CCP/PCA/PWM模块的捕获模式(外部中断)应用

基于STC12C5A60S2系列1T 8051单片机可编程计数阵列CCP/PCA/PWM模块的捕获模式(外部中断)应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍STC12C5A60S2系列1T 805…

学历提升外贸函电试题及答案,分享几个实用搜题和学习工具 #学习方法#笔记#微信

随着信息技术的快速发展&#xff0c;搜题软件应运而生&#xff0c;为大学生提供了便捷的问题解答方式。 1.九超查题 这个公众号比较有趣&#xff0c;它也是可以搜网课题目&#xff0c;复制题目到窗口即可。 题目解析很详细&#xff0c;题库丰富&#xff0c;有较多的学习资料…

docker desktop 登录不上账号

配置走代理&#xff08;系统全局&#xff09;也没用 解决方法 参考博文&#xff1a; https://blog.csdn.net/weixin_37477009/article/details/135797296 https://adoyle.me/Today-I-Learned/docker/docker-desktop.html 下载 Proxifiler 配置 Proxifiler

掌握这6大工具,自媒体ai写作之路畅通无阻! #知识分享#媒体#科技

从事自媒体运营光靠自己手动操作效率是非常低的&#xff0c;想要提高运营效率就必须要学会合理的使用一些辅助工具。下面小编就跟大家分享一些自媒体常用的辅助工具&#xff0c;觉得有用的朋友可以收藏分享。 1.元芳写作 这是一个微信公众号 面向专业写作领域的ai写作工具&am…

爬虫(七)

1.批量爬取知网数据 lxml:是 Python 的一个功能强大且易用的 XML 和 HTML 处理库。它提供了简单又轻巧的 API,使得解析、构建和操作 XML 和 HTML 文档变得非常方便。lxml 库通常用于处理 XML 和 HTML 文档,例如解析网页、处理配置文件等。openpyxl:是 Python 中用于操作 Ex…

uniapp开发:vue3 中vuex的使用

开发工具HbuilderX3.98 在根目录下创建store目录&#xff0c;并在该目录下创建index.js文件 index.js 文件 /*index.js 文件*/// #ifndef VUE3 import Vue from vue import Vuex from vuex import audio from "/store/modules/audio.js" Vue.use(Vuex) const store…

软件测试-概念

衡量软件测试结果的依据--需求 需求的概念 满足用户期望或正式规定文档(合同, 规范, 标准)所具备的条件或权能, 包含用户需求和软件需求. IEEE:定义: 软件需求是(1)用户解决问题或达到目标所需的条件或权能. (2)系统或系统部件要满足合同, 标准, 规范或其它正式规定文档所具备…

使用Lerna搭建业务组件库

Lerna基本概念 Lerna 是一个用来优化托管在 git\npm 上的多 package 代码库的工作流的一个管理工具,可以让你在主项目下管理多个子项目&#xff0c;从而解决了多个包互相依赖&#xff0c;且发布时需要手动维护多个包的问题。 主要功能&#xff1a; 为单个包或多个包运行命令 …

VMware Workstation Pro 17虚拟机超级详细搭建(含redis,nacos,docker)(一)

今天从零搭建一下虚拟机的环境&#xff0c;把nacos&#xff0c;redis等微服务组件还有数据库搭建到里面&#xff0c;首先看到的是我们最开始下载VMware Workstation Pro 17 之后的样子&#xff0c;总共一起应该有三部分因为篇幅太长了 下载地址 : VMware - Delivering a Digit…

ElasticSearch首次启动忘记密码,更改密码(Windows 10)

先启动ElasticSearch 启动方式cmd到lasticsearch-8.12.2\bin目录下输入elasticsearch 启动成功后新开一个窗口输入elasticsearch-reset-password -u elastic

34.基于SpringBoot + Vue实现的前后端分离-足球俱乐部管理系统(项目 + 论文)

项目介绍 系统包含用户、教练、管理员三个角色 用户&#xff1a;登录、注册、查看俱乐部公告信息、查看俱乐部赛事信息、个人中心等教练&#xff1a;登录、个人中心、用户管理、赛事管理、球员数据管理、训练计划管理、公告信息管理等管理员&#xff1a;登录、个人中心、教练…

外包干了4年,技术退步明显.......

先说一下自己的情况&#xff0c;大专生&#xff0c;19年通过校招进入杭州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…

在 GraalVM 静态编译下无侵入实现可观测探索

作者&#xff1a;铖朴、层风 GraalVM 静态编译 背景介绍 随着云原生浪潮的蓬勃发展&#xff0c;利用云原生技术为企业应用提供极致的弹性能力是企业数字化升级的核心诉求。但 Java 作为一种解释执行运行时实时编译的语言&#xff0c;相比于其他静态编译型语言天生具有如下不…
最新文章