软件杯 深度学习+python+opencv实现动物识别 - 图像识别

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 inception_v3网络
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的动物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

利用深度学习对野生动物进行自动识别分类,可以大大提高野生动物监测效率,为野生动物保护策略的制定提供可靠的数据支持。但是目前野生动物的自动识别仍面临着监测图像背景信息复杂、质量低造成的识别准确率低的问题,影响了深度学习技术在野生动物保护领域的应用落地。为了实现高准确率的野生动物自动识别,本项目基于卷积神经网络实现图像动物识别。

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

4 inception_v3网络

简介
如果 ResNet 是为了更深,那么 Inception 家族就是为了更宽。Inception
的作者对训练更大型网络的计算效率尤其感兴趣。换句话说:怎样在不增加计算成本的前提下扩展神经网络?

网路结构图
在这里插入图片描述
主要改动
在这里插入图片描述

  • 将7×7卷积分解为3个3×3的卷积。
  • 35×35的Inception模块采用图1所示结构,之后采用图5类似结构进行下采样
  • 17×17的Inception模块采用图2所示结构,也是采用图5类似结构下采样
  • 8×8的Inception模块采用图3所示结构,进行较大维度的提升。

Tensorflow实现代码



    import os
    import keras
    import numpy as np
    import tensorflow as tf
    from tensorflow.keras import layers
    from tensorflow.keras.models import Model
    config = tf.compat.v1.ConfigProto()
    config.gpu_options.allow_growth = True      # TensorFlow按需分配显存
    config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 指定显存分配比例

    inceptionV3_One={'1a':[64,48,64,96,96,32],
                     '2a':[64,48,64,96,96,64],
                     '3a':[64,48,64,96,96,64]
    }


    inceptionV3_Two={'1b':[192,128,128,192,128,128,128,128,192,192],
                     '2b':[192,160,160,192,160,160,160,160,192,192],
                     '3b':[192,160,160,192,160,160,160,160,192,192],
                     '4b':[192,192,192,192,192,192,192,192,192,192]
    }
    keys_two=(list)(inceptionV3_Two.keys())
    
    inceptionV3_Three={
                    '1c':[320,384,384,384,448,384,384,384,192],
                    '2c':[320,384,384,384,448,384,384,384,192]
    }
    keys_three=(list)(inceptionV3_Three.keys())
    
    def InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three):
        keys_one=(list)(inceptionV3_One.keys())
        keys_two = (list)(inceptionV3_Two.keys())
        keys_three = (list)(inceptionV3_Three.keys())
    
        input=layers.Input(shape=[299,299,3])
    
        # 输入部分
        conv1_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[2, 2], padding='valid')(input)
        conv1_batch=layers.BatchNormalization()(conv1_one)
        conv1relu=layers.Activation('relu')(conv1_batch)
        conv2_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[1,1],padding='valid')(conv1relu)
        conv2_batch=layers.BatchNormalization()(conv2_one)
        conv2relu=layers.Activation('relu')(conv2_batch)
        conv3_padded = layers.Conv2D(64, kernel_size=[3, 3], strides=[1,1],padding='same')(conv2relu)
        conv3_batch=layers.BatchNormalization()(conv3_padded)
        con3relu=layers.Activation('relu')(conv3_batch)
        pool1_one = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(con3relu)
        conv4_one = layers.Conv2D(80, kernel_size=[3,3], strides=[1,1], padding='valid')(pool1_one)
        conv4_batch=layers.BatchNormalization()(conv4_one)
        conv4relu=layers.Activation('relu')(conv4_batch)
        conv5_one = layers.Conv2D(192, kernel_size=[3, 3], strides=[2,2], padding='valid')(conv4relu)
        conv5_batch = layers.BatchNormalization()(conv5_one)
        x=layers.Activation('relu')(conv5_batch)
    
        """
            filter11:1x1的卷积核个数
            filter13:3x3卷积之前的1x1卷积核个数
            filter33:3x3卷积个数
            filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数
            filter55:使用3x3卷积代替5x5卷积个数
            filtermax:最大池化之后的1x1卷积核个数
        """
        for i in range(3):
            conv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion11 = layers.BatchNormalization()(conv11)
            conv11relu = layers.Activation('relu')(batchnormaliztion11)
    
            conv13 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion13 = layers.BatchNormalization()(conv13)
            conv13relu = layers.Activation('relu')(batchnormaliztion13)
            conv33 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][2]), kernel_size=[5, 5], strides=[1, 1], padding='same')(conv13relu)
            batchnormaliztion33 = layers.BatchNormalization()(conv33)
            conv33relu = layers.Activation('relu')(batchnormaliztion33)
    
            conv1533 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][3]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion1533 = layers.BatchNormalization()(conv1533)
            conv1522relu = layers.Activation('relu')(batchnormaliztion1533)
            conv5533first = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv1522relu)
            batchnormaliztion5533first = layers.BatchNormalization()(conv5533first)
            conv5533firstrelu = layers.Activation('relu')(batchnormaliztion5533first)
            conv5533last = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv5533firstrelu)
            batchnormaliztion5533last = layers.BatchNormalization()(conv5533last)
            conv5533lastrelu = layers.Activation('relu')(batchnormaliztion5533last)
    
            maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)
            maxconv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][5]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)
            batchnormaliztionpool = layers.BatchNormalization()(maxconv11)
            convmaxrelu = layers.Activation('relu')(batchnormaliztionpool)
    
            x=tf.concat([
                conv11relu,conv33relu,conv5533lastrelu,convmaxrelu
            ],axis=3)
    
        conv1_two = layers.Conv2D(384, kernel_size=[3, 3], strides=[2, 2], padding='valid')(x)
        conv1batch=layers.BatchNormalization()(conv1_two)
        conv1_tworelu=layers.Activation('relu')(conv1batch)
    
        conv2_two = layers.Conv2D(64, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
        conv2batch=layers.BatchNormalization()(conv2_two)
        conv2_tworelu=layers.Activation('relu')(conv2batch)
        conv3_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[1,1], padding='same')(conv2_tworelu)
        conv3batch=layers.BatchNormalization()(conv3_two)
        conv3_tworelu=layers.Activation('relu')(conv3batch)
        conv4_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv3_tworelu)
        conv4batch=layers.BatchNormalization()(conv4_two)
        conv4_tworelu=layers.Activation('relu')(conv4batch)
    
        maxpool = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)
        x=tf.concat([
            conv1_tworelu,conv4_tworelu,maxpool
        ],axis=3)
        """
            filter11:1x1的卷积核个数
            filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数
            filter33:使用1x3,3x1卷积代替3x3卷积的个数
            filter15:使用1x3,3x1,1x3,3x1卷积卷积代替5x5卷积之前的1x1卷积核个数
            filter55:使用1x3,3x1,1x3,3x1卷积代替5x5卷积个数
            filtermax:最大池化之后的1x1卷积核个数
        """
        for i in range(4):
            conv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion11 = layers.BatchNormalization()(conv11)
            conv11relu=layers.Activation('relu')(batchnormaliztion11)
    
            conv13 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion13 = layers.BatchNormalization()(conv13)
            conv13relu=layers.Activation('relu')(batchnormaliztion13)
            conv3313 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][2]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv13relu)
            batchnormaliztion3313 = layers.BatchNormalization()(conv3313)
            conv3313relu=layers.Activation('relu')(batchnormaliztion3313)
            conv3331 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][3]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv3313relu)
            batchnormaliztion3331 = layers.BatchNormalization()(conv3331)
            conv3331relu=layers.Activation('relu')(batchnormaliztion3331)
    
            conv15 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion15 = layers.BatchNormalization()(conv15)
            conv15relu=layers.Activation('relu')(batchnormaliztion15)
            conv1513first = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][5]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv15relu)
            batchnormaliztion1513first = layers.BatchNormalization()(conv1513first)
            conv1513firstrelu=layers.Activation('relu')(batchnormaliztion1513first)
            conv1531second = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][6]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513firstrelu)
            batchnormaliztion1531second = layers.BatchNormalization()(conv1531second)
            conv1531second=layers.Activation('relu')(batchnormaliztion1531second)
            conv1513third = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][7]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv1531second)
            batchnormaliztion1513third = layers.BatchNormalization()(conv1513third)
            conv1513thirdrelu=layers.Activation('relu')(batchnormaliztion1513third)
            conv1531last = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][8]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513thirdrelu)
            batchnormaliztion1531last = layers.BatchNormalization()(conv1531last)
            conv1531lastrelu=layers.Activation('relu')(batchnormaliztion1531last)
    
            maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)
            maxconv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][9]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)
            maxconv11relu = layers.BatchNormalization()(maxconv11)
            maxconv11relu = layers.Activation('relu')(maxconv11relu)
    
            x=tf.concat([
                conv11relu,conv3331relu,conv1531lastrelu,maxconv11relu
            ],axis=3)
    
        conv11_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
        conv11batch=layers.BatchNormalization()(conv11_three)
        conv11relu=layers.Activation('relu')(conv11batch)
        conv33_three=layers.Conv2D(320, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv11relu)
        conv33batch=layers.BatchNormalization()(conv33_three)
        conv33relu=layers.Activation('relu')(conv33batch)
    
        conv7711_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
        conv77batch=layers.BatchNormalization()(conv7711_three)
        conv77relu=layers.Activation('relu')(conv77batch)
        conv7717_three=layers.Conv2D(192, kernel_size=[1, 7], strides=[1, 1], padding='same')(conv77relu)
        conv7717batch=layers.BatchNormalization()(conv7717_three)
        conv7717relu=layers.Activation('relu')(conv7717batch)
        conv7771_three=layers.Conv2D(192, kernel_size=[7, 1], strides=[1, 1], padding='same')(conv7717relu)
        conv7771batch=layers.BatchNormalization()(conv7771_three)
        conv7771relu=layers.Activation('relu')(conv7771batch)
        conv33_three=layers.Conv2D(192, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv7771relu)
        conv3377batch=layers.BatchNormalization()(conv33_three)
        conv3377relu=layers.Activation('relu')(conv3377batch)
    
        convmax_three=layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)
        x=tf.concat([
            conv33relu,conv3377relu,convmax_three
        ],axis=3)
        """
            filter11:1x1的卷积核个数
            filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数
            filter33:使用1x3,3x1卷积代替3x3卷积的个数
            filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数
            filter55:使用3x3卷积代替5x5卷积个数
            filtermax:最大池化之后的1x1卷积核个数
            """
        for i in range(2):
            conv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion11 = layers.BatchNormalization()(conv11)
            conv11relu=layers.Activation('relu')(batchnormaliztion11)
    
            conv13 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion13 = layers.BatchNormalization()(conv13)
            conv13relu=layers.Activation('relu')(batchnormaliztion13)
            conv33left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][2]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv13relu)
            batchnormaliztion33left = layers.BatchNormalization()(conv33left)
            conv33leftrelu=layers.Activation('relu')(batchnormaliztion33left)
            conv33right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][3]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv33leftrelu)
            batchnormaliztion33right = layers.BatchNormalization()(conv33right)
            conv33rightrelu=layers.Activation('relu')(batchnormaliztion33right)
            conv33rightleft=tf.concat([
                conv33leftrelu,conv33rightrelu
            ],axis=3)
    
            conv15 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)
            batchnormaliztion15 = layers.BatchNormalization()(conv15)
            conv15relu=layers.Activation('relu')(batchnormaliztion15)
            conv1533 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][5]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv15relu)
            batchnormaliztion1533 = layers.BatchNormalization()(conv1533)
            conv1533relu=layers.Activation('relu')(batchnormaliztion1533)
            conv1533left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv1533relu)
            batchnormaliztion1533left = layers.BatchNormalization()(conv1533left)
            conv1533leftrelu=layers.Activation('relu')(batchnormaliztion1533left)
            conv1533right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv1533leftrelu)
            batchnormaliztion1533right = layers.BatchNormalization()(conv1533right)
            conv1533rightrelu=layers.Activation('relu')(batchnormaliztion1533right)
            conv1533leftright=tf.concat([
                conv1533right,conv1533rightrelu
            ],axis=3)
    
            maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1],padding='same')(x)
            maxconv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][8]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)
            batchnormaliztionpool = layers.BatchNormalization()(maxconv11)
            maxrelu = layers.Activation('relu')(batchnormaliztionpool)
    
            x=tf.concat([
                conv11relu,conv33rightleft,conv1533leftright,maxrelu
            ],axis=3)
    
        x=layers.GlobalAveragePooling2D()(x)
        x=layers.Dense(1000)(x)
        softmax=layers.Activation('softmax')(x)
        model_inceptionV3=Model(inputs=input,outputs=softmax,name='InceptionV3')
        return model_inceptionV3
    
    model_inceptionV3=InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three)
    model_inceptionV3.summary()



5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/497265.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Tensorflow2.0笔记 - 自定义Layer和Model

本笔记主要记录如何在tensorflow中实现自定的Layer和Model。详细内容请参考代码中的链接。 import time import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets, layers, optimizers, Sequential, metricstf.__version__ #关于自定义l…

国自然提交状态,NSFC已审核 ≠ 申请书被受理!!!

本 期 推 荐 【SciencePub学术】2024年度国家自然科学基金集中受理期项目申请受理工作已基本结束。到底什么状态才算申请书被NSFC接收成功呢? 01 申请书状态 申请人登录ISIS系统,至此,绝大部分申请人的系统状态为下面三种: …

排序C++

题目 法1 sort升序排序&#xff0c;再逆序输出 #include<iostream> #include<algorithm> using namespace std;const int N 5e53;//注意const&#xff0c;全局 int a[N]; int main() {//错误int N5e53;//错误const int a[N];int n;cin >> n;for (int i 1;…

激光是如何产生的?

激光产生的原理 美国于1960年成功研制出世界上第一台红宝石激光器&#xff0c;我国也于1961年成功研制出第一台国产红宝石激光器&#xff08;诞生于中国科学院长春光学精密机械研究所&#xff09;&#xff0c;激光技术被认为是第二个20世纪&#xff0c;继量子物理、无线电技术、…

CenOS安装yum(超详细)

专栏文章索引&#xff1a;Linux 目录 1.检查yum源是否安装 2.卸载yum源 3.去网站下载yum源&#xff0c;至少需要下载3个 4.安装&#xff08;不要出现其他后缀名为rpm的文件&#xff09; 1.检查yum源是否安装 rpm -qa|grep yum 2.卸载yum源 查看一下是否成功删除 3.去网站下…

剑指Offer题目笔记20(在数组范围内二分查找)

面试题72&#xff1a; 问题&#xff1a; ​ 输入一个非负整数&#xff0c;计算它的平方根。 解决方案&#xff1a; 使用二分查找。一个数x的平方根一定小于或等于x&#xff0c;同时&#xff0c;除了0之外的所有非负整数的平方根都大于等于1&#xff0c;故该数的平方根在1到x…

php 快速入门(七)

一、操作数据库 1.1 操作MySQL的步骤 第一步&#xff1a;登录MySQL服务器 第二步&#xff1a;选择当前数据库 第三步&#xff1a;设置请求数据的字符集 第四步&#xff1a;执行SQL语句 1.2 连接MySQL 函数1&#xff1a;mysql_connect() 功能&#xff1a;连接&#xff08;登录…

HTTP

HTTP 概念&#xff1a;HyperTextTransferProtocol&#xff0c;超文本传输协议&#xff0c;规定了浏览器和服务器之间数据传输的规则 HTTP协议特点&#xff1a; 1.基于TCP协议&#xff1a;面向连接&#xff0c;安全 2.基于请求-响应模型的&#xff1a;一次请求对应一次响应 …

pipeline script for SCM 构建go项目

pipeline script 和 pipeline script for SCM 推荐使用第二种 首先需要再项目的根目录下新建Jenkinsfile 文件 pipeline for SCM 拉取github 代码 自动生成Jenkinsfile 的语法 生成jenkinsfile 的拉取脚本 项目中编写Jenkinsfile文件 pipeline {agent anystages …

如何评估户外LED显示屏的质量标准

随着数字媒体的不断进步&#xff0c;户外LED显示屏已经成为现代城市不可或缺的一部分&#xff0c;它们以鲜明的视觉冲击力和广泛的应用范围&#xff0c;成为了广告和公共信息传播的重要工具。然而&#xff0c;并非所有的户外LED显示屏都能满足高标准的户外使用要求。为了确保投…

MoonBit MeetUp回顾——张正、宗喆:编程语言在云原生与区块链领域的技术探索

宗喆和张正分别给我们带了 KCL 相关的最新进展&#xff0c;由蚂蚁集团开发的 Rust 编写的开源 DSL&#xff0c;目标是优化云原生策略配置和用户体验。它通过引入动态配置管理、配置校验和基础设施抽象等核心概念&#xff0c;解决开发者认知负担、配置膨胀和标准化工具缺乏的问题…

国内外主要气象卫星介绍

NOAA AVHRR介绍 美国NOAA极轨卫星从1970年12月第一颗发射以来&#xff0c;近40年连续发射了18颗&#xff0c;最新的NOAA-19也将在2009年发射升空。NOAA卫星共经历了5代&#xff0c;目前使用较多的为第五代NOAA卫星&#xff0c;包括NOAA-15—NOAA-18&#xff1b;作为备用的第四…

【STM32CubeMX(1)】开发环境搭建

1、安装STM32CubeMX 安装前言&#xff1a;软件是免费的&#xff0c;网上安装教程也是很丰富&#xff0c;我就不造轮子了。 1.1 准备java-jdk环境 参考&#xff1a;Java环境配置|菜鸟教程 1.2 下载STM32CubeMX 获取安装包&#xff1a;STM32CubeMX - STM32Cube initializati…

verilog 从入门到看得懂---verilog 的基本语法各种语句

本篇文章主要介绍verilog里面常用的语句&#xff0c; 包括条件语句、循环语句块语句和生成语句。出了块语句和生成语句&#xff0c;其他的基本和c语言或者m语言一致。 1&#xff0c;if 语句&#xff0c;在需要判断逻辑的时候可以使用if语句&#xff0c;如 从输入a&#xff0c;…

SpringCloud实用篇(一)

1.SpringCloud SpringCloud是目前国内使用最广泛的微服务框架。官网地址&#xff1a;Spring Cloud SpringCloud集成了各种微服务功能组件&#xff0c;并基于SpringBoot实现了这些组件的自动装配&#xff0c;从而提供了良好的开箱即用体验&#xff1a; SpringCloud与SpringBoo…

Python中的排序算法:归并排序,选择排序和快速排序详解

排序算法是计算机科学中的一个基础且重要的概念。它用于将一组数据&#xff08;如数字、字符串等&#xff09;按照某种顺序&#xff08;升序或降序&#xff09;重新排列。在Python中&#xff0c;我们有许多内置的函数和库可以方便地实现排序&#xff0c;但理解排序算法的基本思…

Netty对Channel事件的处理以及空轮询Bug的解决

继续上一篇Netty文章&#xff0c;这篇文章主要分析Netty对Channel事件的处理以及空轮询Bug的解决 当Netty中采用循环处理事件和提交的任务时 由于此时我在客户端建立连接&#xff0c;此时服务端没有提交任何任务 此时select方法让Selector进入无休止的阻塞等待 此时selectCnt进…

企业员工培训考试系统开发方案

一、引言 在当今知识经济时代&#xff0c;企业对员工的综合素质和专业技能有着越来越高的要求。为了适应这一趋势&#xff0c;构建一个全面而高效的企业员工培训考试系统变得尤为重要。该系统旨在通过提供多样化的培训课程和全面的考核机制&#xff0c;促进员工持续学习和能力…

24/03/28总结

抽象类&#xff1a; 将共性的方法抽取到父类之后。由于每一个子类执行的内容是不一样&#xff0c;所以&#xff0c;在父类中不能确定具体的方法体。该方法就可以定义为抽象方法。 而为什么不直接在子类中定义方法&#xff1a;项目的完成不是一个人&#xff0c;如果有时忘记写方…
最新文章