2014年认证杯SPSSPRO杯数学建模B题(第二阶段)位图的处理算法全过程文档及程序

2014年认证杯SPSSPRO杯数学建模

B题 位图的处理算法

原题再现:

  图形(或图像)在计算机里主要有两种存储和表示方法。矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形,位图则使用像素来描述图像。一般来说,照片等相对杂乱的图像使用位图格式较为合适,矢量图则多用于工程制图、标志、字体等场合。矢量图可以任意放缩,图形不会有任何改变。而位图一旦放大后会产生较为明显的模糊,线条也会出现锯齿边缘等现象。
  第二阶段问题: 位图在放大时,图像质量常会有所下降,如容易产生较为明显的模糊或马赛克等现象(见图2)。请你建立合理的数学模型,来设计一个放大位图的算法,使图像在被放大后仍能尽量保持较好的图像质量。
在这里插入图片描述
在这里插入图片描述

整体求解过程概述(摘要)

  本文针对位图的放大问题,以题中所给的位图为切入点,综合分析了位图各像素点的坐标及其对应的RGB分量,并通过文献的查阅,基于插值图像边缘部分的分辨率对整个图像放大的重要影响,确立了对边缘部分与非边缘部分采取不同插值算法的建模思路,建立了基于Sobel算子改进后的彩色图像边缘检测模、Thiele - Newton插值法图像边缘部分放大模型、图像放大的分片连续模型和图像“质检—去噪—后处理”模型,运用Matlab软件,C++对图像数据进行处理、分析。最后,对整个模型存在的不足与优点进行讨论,提出对原模型的改进和推广。
  针对问题一,首先,使用改进后的适用于彩色图像的Sobel算法对原图像,借助C++程序对图像进行边缘检测,得到边缘像素点及其RGB值。然后,对边缘像素点进行精密的Thiele - Newton二元有理插值,实现边缘区域的放大算法。
  针对问题二,通过对非边缘图像划分区域段,建立段内连续函数,连续段间的延拓将其分为分片连续的曲面。然后,将整个非边缘曲面表示为了二元的分片连续函数,通过像素RGB分量在新坐标系中的映射关系实现非边缘区域的放大算法。
  针对问题三,首先,问题一与问题二中模型所产生两部分区域放大的组合已初步实现了整个图像的高保真放大,但基于对图像清晰度及背景平滑性的考虑,需要对放大后的图像进行进一步处理。使用彩色图像矢量中通滤波进行去噪处理,并利用反锐化掩模法对插值图像的细节进行进一步增强。本文还对模型的误差进行了具体分析;对模型的优化提出了针对性的改进,分析了模型存在优势与不足。最后,我们又对模型进行了多个方向的推广,分析了其在三维图像放大处理与二维图像缩小处理上的应用前景。

问题分析:

  问题一:对彩色图像进行边缘区域检测并对其进行边缘插值。
将问题一拆分为两个部分:第一,改进Sobel算子,对目标彩色图像边缘区域进行检测;第二,对边缘区域像素点进行插值。首先,运用数学软件Matlab对检测目标图像的边缘区域,得到轮廓像素点的坐标及其对应的RGB分量。考虑到Sobel算子对灰度图像边缘检测效果较好,但是对彩色图像边缘检测会出现边缘模糊的现象,影响后续图像处理。因此,根据彩色图像特点,通过计算RGB分量梯度值,改进Sobel边缘检测方法,提升边缘检测效果。其次,在图像边缘区域采取自适应插值算法,运用较小的运算价,以便能够得到更好的放大效果。

  问题二:对图像进行分片处理,确定局部连续区域(非边缘区域)分片为曲面,并对曲面进行插值。经过模型Ⅰ和模型Ⅱ对图像边缘像的检测提取并进行插值放大处理后,我们需要对大量的非边缘图像部分进行放大处理。使用较为普遍的算法如最近邻域法,双线性内插法,三次内插法等方法虽然能够快速生成较为视觉效果较为良好的目的图像,但仍然存在图像中物体边界区域模糊的问题,限制了其在实际生活场合以及专业图像处理场合的应用。基于此,我们采用一种图像的分片连续数学模型,先将图像分片为连续的曲面,再对曲面进行插值,将原始图像用二元分片连续函数表示,进而对非边缘部分进行放大处理。

  问题三:对目标图像进行放大后的质量提升处理。经过对目标图像两部分有针对性地进行不同的插值放大算法后,我们得到了目标图像初步放大后的结果。但为了保证放大后图像的视觉质量,我们需要对放大后的图像进行如下操作:
在这里插入图片描述

模型假设:

  1.假设目标图像水平清晰度较高,图像质量较高。
  2.假设目标图像尺寸较小,像素点数量有限,可以进一步进行图像放大。
  3.假设目标图像可能被噪声污染,存在一定噪点,需要进行去噪处理。
  4.假设对目标图像的像素点进行插值得到的曲线或平面具有一定的光滑性。

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
int _tmain(int argc, _TCHAR* argv[])
{
// TODO: Add your command handler code here
//定义的变量
IplImage* pImage= NULL; // 声明 IplImage 变量
IplImage* pImgSobelgray= NULL;// 声明 IplImage 变量,用于灰度图像 Sobel 变换
IplImage* pImg8u= NULL;// 声明 IplImage 变量,用于图像格式转换
IplImage* pImg8uSmooth= NULL;// 声明 IplImage 变量,用于存储平滑后的图像
IplImage* pImgColor= NULL;// 声明 IplImage 变量,用于 Sobel 变换

IplImage* pImgSobelcolor= NULL;// 声明 IplImage 变量,用于彩色图像 Sobel 变换
IplImage* pImgPlanes[3] = { 0, 0, 0 };
IplImage* pImage = cvLoadImage ( "barbara.png", CV_LOAD_IMAGE_GRAYSCALE );
cvNamedWindow ( "Original Image " , 1 );
cvShowImage ( " Original Image " , img );
//将已读入系统的图像复制一份
//pImage=cvCloneImage( img );
//建立和原始图像一样图像内存区,图像元素的位深度设为 IPL_DEPTH_8U 
//即无符号 8 位整型
pImg8u = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_8U, 1);
pImg8uSmooth = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_8U, 1);
//对灰度图像进行 Sobel 变换
//将彩色图像转换为灰度图像
cvCvtColor(pImage, pImg8u, CV_BGR2GRAY);
//对图像进行高斯滤波
cvSmooth( pImg8u, pImg8uSmooth,CV_GAUSSIAN,3,0,0);
//建立一新图像内存区,图像元素的位深度设为 IPL_DEPTH_16S 有符号 16 位整型
//因为 cvSobel 函数要求目标图像必须是 16-bit 图像
pImgSobelgray = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_16S, 1);
//计算一阶 x 方向的图像差分,可根据需要设置参数
cvSobel(pImg8uSmooth, pImgSobelgray,0,1,3);
//将图像格式再转换回来,用于显示
 cvConvertScaleAbs(pImgSobelgray,pImg8u,1,0 ) ;
//创建窗口,显示图像
cvvNamedWindow( "Sobel gray Image", 1 ); 
 cvvShowImage( "Sobel gray Image", pImg8u ); 
//对彩色图像进行 Sobel 变换
//建立 3 个图像内存区,分别存储图像 3 个通道,图像元素的位深度设为 IPL_DEPTH_8U
int i;
for( i = 0; i < 3; i++ )
pImgPlanes[i] = cvCreateImage( cvSize(pImage ->width, pImage ->height), 8, 1 );
//建立一新图像内存区,图像元素的位深度设为 IPL_DEPTH_16S 有符号 16 位整型
pImgSobelcolor = cvCreateImage( cvSize(pImage ->width, pImage ->height), 
IPL_DEPTH_16S, 1 );
//要求输出图像是 16 位有符号的
pImgColor = cvCreateImage( cvSize(pImage ->width, pImage ->height), 8, 3 );
//将彩色图像分成 3 个单通道图像
cvCvtPixToPlane(pImage, pImgPlanes[0], pImgPlanes[1], pImgPlanes[2], 0 );
for( i = 0; i < 3; i++ )
{
//分别对每通道图像进行 Sobel 变换
cvSobel( pImgPlanes[i], pImgSobelcolor,0,1,3 );
//转化为 8 位的图像
cvConvertScaleAbs(pImgSobelcolor, pImgPlanes[i], 1, 0 ); 
}
//将各通道图像进行合并
cvCvtPlaneToPix( pImgPlanes[0], pImgPlanes[1], pImgPlanes[2], 0, pImgColor);
//创建窗口,显示图像
cvvNamedWindow( "Sobel color Image", 1 ); 
cvvShowImage( "Sobel color Image", pImgColor); 
//等待按键
cvWaitKey(0); 
//销毁窗口
cvDestroyWindow( " Sobel gray Image " );
cvDestroyWindow( " Sobel color Image " );
//将程序开始定义的变量释放
cvReleaseImage( & pImage);
cvReleaseImage( & pImgSobelgray);
cvReleaseImage( & pImgSobelcolor);
cvReleaseImage( & pImg8u);
cvReleaseImage( & pImg8uSmooth);
return 0;
}
I=imread('写入图片存放的位置,后缀.图像格式');
I1=rgb2gray(I);
I2=medfilt2(I1,[m,n]);
%%%I2 就是中值滤波后的图像,medfilt2 是 matlab 中中值滤波函数,直接调用即可,m 和 n
是选取的平滑窗口,一般为 3*3,可以进行调整
要分离的话,可以这样做:
M=imread('D:\ebook\lena.bmp'); %读取 MATLAB 中的名为 cameraman 的图像
subplot(2,2,1)
imshow(M) %显示原始图像
title('original')
P1=imnoise(M,'gaussian',0.02); %加入高斯躁声
subplot(2,2,2)
imshow(P1) %加入高斯躁声后显示图像
title('gaussian noise');
g1=medfilt2(P1(:,:,1));%%红
g2=medfilt2(P1(:,:,2));%%绿
g3=medfilt2(P1(:,:,3));%%蓝
g(:,:,1)=g1;
g(:,:,2)=g2;
g(:,:,3)=g3;
subplot(2,2,3)
imshow(g)
title('medfilter gaussian')
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/498363.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

3D产品可视化SaaS

“我们正在走向衰退吗&#xff1f;” “我们已经陷入衰退了吗&#xff1f;” “我们正在步入衰退。” 过去几个月占据头条的问题和陈述引发了关于市场对每个行业影响的讨论和激烈辩论。 特别是对于科技行业来说&#xff0c;过去几周一直很动荡&#xff0c;围绕费用、增长和裁…

1.8 python 模块 time、random、string、hashlib、os、re、json

ython之模块 一、模块的介绍 &#xff08;1&#xff09;python模块&#xff0c;是一个python文件&#xff0c;以一个.py文件&#xff0c;包含了python对象定义和pyhton语句 &#xff08;2&#xff09;python对象定义和python语句 &#xff08;3&#xff09;模块让你能够有逻辑地…

Tomcat 单机多实例一键安装

文章目录 一、场景说明二、脚本职责三、参数说明四、操作示例五、注意事项 一、场景说明 本自动化脚本旨在为提高研发、测试、运维快速部署应用环境而编写。 脚本遵循拿来即用的原则快速完成 CentOS 系统各应用环境部署工作。 统一研发、测试、生产环境的部署模式、部署结构、…

Linux安装redis(基于CentOS系统,Ubuntu也可参考)

前言&#xff1a;本文内容为实操记录&#xff0c;仅供参考&#xff01; 一、下载并解压Redis 1、执行下面的命令下载redis&#xff1a;wget https://download.redis.io/releases/redis-6.2.6.tar.gz 2、解压redis&#xff1a;tar xzf redis-6.2.6.tar.gz 3、移动redis目录&a…

D. Friends and Subsequences 线段树上二分

有个细节&#xff0c;就是query的时候的顺序&#xff0c;不注意到直接T飞&#xff0c;分析知道如果它只在一边的话你直接一边 可以保证复杂度 #include<iostream> #include<cstring> #include<algorithm>const int N 2e510; using namespace std; using ll…

MySQL 数据库的日志管理、备份与恢复

一. 数据库备份 1.数据备份的重要性 备份的主要目的是灾难恢复。 在生产环境中&#xff0c;数据的安全性至关重要。 任何数据的丢失都可能产生严重的后果。 造成数据丢失的原因&#xff1a; 程序错误人为,操作错误,运算错误,磁盘故障灾难&#xff08;如火灾、地震&#xff0…

比较AI编程工具Copilot、Tabnine、Codeium和CodeWhisperer

主流的几个AI智能编程代码助手包括Github Copilot、Codeium、Tabnine、Replit Ghostwriter和Amazon CodeWhisperer。 你可能已经尝试过其中的一些&#xff0c;也可能还在不断寻找最适合自己或公司使用的编程助手。但是&#xff0c;这些产品都会使用精选代码示例来实现自我宣传…

Vue挂载全局方法

简介&#xff1a;有时候&#xff0c;频繁调用的函数&#xff0c;我们需要把它挂载在全局的vue原型上&#xff0c;方便调用&#xff0c;具体怎么操作&#xff0c;这里来记录一下。 一、这里以本地存储的方法为例 var localStorage window.localStorage; const db {/** * 更新…

如何在 Mac Pro 上恢复丢失的数据?

无论您多么努力&#xff0c;几乎不可能永远不会无意中删除 Mac 上的文件。当您得知删除后清空了垃圾箱时&#xff0c;您的处境可能看起来很黯淡。不要灰心。我们将教您如何使用本机操作系统功能或数据恢复工具恢复丢失的数据。奇客数据恢复Mac版可帮助恢复已从 Mac Pro 计算机上…

npm救赎之道:探索--save与--save--dev的神秘力量!

目录 1. --save和--save-dev是什么&#xff1f;2. 区别与应用场景--save--save-dev 3. 生产环境与开发环境4. 实际应用示例--save--save-dev 5. 总结 在现代软件开发中&#xff0c;npm&#xff08;Node Package Manager&#xff09;扮演着不可或缺的角色&#xff0c;为开发者提…

Java八股文(JVM)

Java八股文のJVM JVM JVM 什么是Java虚拟机&#xff08;JVM&#xff09;&#xff1f; Java虚拟机是一个运行Java字节码的虚拟机。 它负责将Java程序翻译成机器代码并执行。 JVM的主要组成部分是什么&#xff1f; JVM包括以下组件&#xff1a; ● 类加载器&#xff08;ClassLoa…

HTTP状态 405 - 方法不允许

方法有问题。 用Post发的请求&#xff0c;然后用Put接收的。 大家也可以看看是不是有这种问题 <body><h1>HTTP状态 405 - 方法不允许</h1><hr class"line" /><p><b>类型</b> 状态报告</p><p><b>消息…

如何使用常用的苹果应用商店上架工具提高应用下载量

摘要 移动应用app上架是开发者关注的重要环节&#xff0c;但常常会面临审核不通过等问题。为帮助开发者顺利完成上架工作&#xff0c;各种辅助工具应运而生。本文探讨移动应用app上架原理、常见辅助工具功能及其作用&#xff0c;最终指出合理使用工具的重要性。 引言 移动应…

python(一)网络爬取

在爬取网页信息时&#xff0c;需要注意网页爬虫规范文件robots.txt eg:csdn的爬虫规范文件 csdn.net/robots.txt User-agent: 下面的Disallow规则适用于所有爬虫&#xff08;即所有用户代理&#xff09;。星号*是一个通配符&#xff0c;表示“所有”。 Disallow&…

Groovy结合Java在生产中的落地实战

Groovy简介 Groovy是用于Java虚拟机的一种敏捷的动态语言&#xff0c;是一种成熟的面向对象编程语言&#xff0c;又是一种纯粹的脚本语言。Groovy运行在JVM环境上&#xff0c;在语法上兼具java 语言和脚本语言特点&#xff0c;大大简化了语法。同时又具有闭包和动态语言中的其…

系统分析师-软件开发模型总结

前言 软件工程模型也称软件开发模型。它是指软件开发全部过程、活动和任务的结构框架&#xff0c;通过该模型能清晰、直观地表达软件开发全过程&#xff0c;明确地规定要完成的主要活动和任务&#xff0c;它奠定了软件项目工作的基础 一、瀑布模型&#xff08;Waterfall Model…

Web Components使用(一)

在使用Web Components之前&#xff0c;我们先看看上一篇文章Web Components简介&#xff0c;其中提到了相关的接口、属性和方法。 正是这些接口、属性和方法才实现了Web Components的主要技术&#xff1a;Custom elements&#xff08;自定义元素&#xff09;、Shadow DOM&#…

网络编程--高并发服务器(二)

这里写目录标题 线程池高并发服务器UDP服务器TCP与UDP机制的对比TCP与UDP优缺点比较UDP的C/S模型实现思路模型分析实现思路&#xff08;对照TCP的C/S模型&#xff09; 二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二…

STM32 PWM通过RC低通滤波转双极性SPWM测试

STM32 PWM通过RC低通滤波转双极性SPWM测试 &#x1f4cd;参考内容《利用是stm32cubemx实现双极性spwm调制 基于stm32f407vet6》&#x1f4fa;相关视频链接&#xff1a;https://www.bilibili.com/video/BV16S4y147hB/?spm_id_from333.788 双极性SPWM调制讲解以及基于stm32的代码…

Machine Learning机器学习之贝叶斯网络(BayesianNetwork)

目录 前言 算法提出背景&#xff1a; 贝叶斯算法特点&#xff1a; 一、贝叶斯定理 二、朴素贝叶斯分类模型 1、朴素贝叶斯分类模型&#xff08;Naive Bayes Classifier&#xff09; 2、原理 2.1 朴素贝叶斯假设 2.2条件独立性假设 2.3后验概率计算 2.4类别预测 2.5小结 3、建模…
最新文章