YOLOv8改进 | 检测头篇 | 自研超分辨率检测头HATHead助力超分辨率检测(混合注意力变换器检测头)

一、本文介绍

本文给大家带来的改进机制是由由我本人利用HAT注意力机制(超分辨率注意力机制)结合V8检测头去掉其中的部分内容形成一种全新的超分辨率检测头混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息。本文中均有添加方法和原理解析,本文内容为我独家创新。

 欢迎大家订阅我的专栏一起学习YOLO!  

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、本文介绍

二、基本原理介绍

三、核心代码 

四、HATHead的添加方法

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

4.5 修改五

4.6 修改六 

4.7 修改七 

4.8 修改八 

4.9 修改九 

4.9 修改十

五、 目标检测的yaml文件

5.1 yaml文件

5.2 运行记录

六、本文总结


二、基本原理介绍

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转


这张图片展示了两种神经网络模块的结构:自注意力模块(Self-Attention Module)和卷积模块(Convolution Module)。这两个模块被设计用于搜索最佳组合,以在保持记忆效率的同时实现特征提取。

自注意力模块包含以下部分:

  • 一个1x1的卷积层,用于降低特征维度(c1->c2),减少自注意力的计算负荷。
  • 多头自注意力层(MHSA),能够捕获特征间的长距离依赖关系。
  • 另一个1x1的卷积层,用于恢复特征维度(c2->c1)。
  • 批量归一化层(BN),用于网络训练中的规范化处理。
  • 加法操作,将自注意力模块的输出与初始输入相加,形成残差连接。
  • ReLu激活函数。

卷积模块包含以下部分:

  • 一个降采样步骤,通过0.5倍的降频和3x3的卷积来降低空间分辨率,减少计算量。
  • 一个1x1的卷积层,用于特征转换。
  • 一个上采样步骤,通过2倍的增频恢复空间分辨率。
  • 批量归一化层(BN)。
  • 加法操作,将上采样后的输出与降采样之前的输入相加,实现跳跃连接。
  • ReLu激活函数。

总结:
图中所示的模块是为了在高分辨率特征提取中寻找高效的结构。自注意力模块旨在捕获更广泛的上下文信息,而卷积模块则专注于保留局部信息和减少计算复杂度。这两种模块的结合旨在通过架构搜索找到一个既能高效提取特征又能保持较低计算成本的最佳网络结构。


三、核心代码 

 核心代码的使用方式看章节四!

import math
import torch
import torch.nn as nn
from basicsr.archs.arch_util import to_2tuple, trunc_normal_
from einops import rearrange
from ultralytics.utils.tal import dist2bbox, make_anchors

__all__ = ['HATHead']

def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class ChannelAttention(nn.Module):
    """Channel attention used in RCAN.
    Args:
        num_feat (int): Channel number of intermediate features.
        squeeze_factor (int): Channel squeeze factor. Default: 16.
    """

    def __init__(self, num_feat, squeeze_factor=16):
        super(ChannelAttention, self).__init__()
        self.attention = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
            nn.Sigmoid())

    def forward(self, x):
        y = self.attention(x)
        return x * y


class CAB(nn.Module):

    def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):
        super(CAB, self).__init__()

        self.cab = nn.Sequential(
            nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
            nn.GELU(),
            nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
            ChannelAttention(num_feat, squeeze_factor)
        )

    def forward(self, x):
        return self.cab(x)


class Mlp(nn.Module):

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (b, h, w, c)
        window_size (int): window size
    Returns:
        windows: (num_windows*b, window_size, window_size, c)
    """
    b, h, w, c = x.shape
    x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
    return windows


def window_reverse(windows, window_size, h, w):
    """
    Args:
        windows: (num_windows*b, window_size, window_size, c)
        window_size (int): Window size
        h (int): Height of image
        w (int): Width of image
    Returns:
        x: (b, h, w, c)
    """
    b = int(windows.shape[0] / (h * w / window_size / window_size))
    x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
    return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)

        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, rpi, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*b, n, c)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        b_, n, c = x.shape
        qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nw = mask.shape[0]
            attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, n, n)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class HAB(nn.Module):
    r""" Hybrid Attention Block.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 num_heads,
                 window_size=7,
                 shift_size=0,
                 compress_ratio=3,
                 squeeze_factor=30,
                 conv_scale=0.01,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop)

        self.conv_scale = conv_scale
        self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, x_size, rpi_sa, attn_mask):
        h, w = x_size
        b, _, c = x.shape
        # assert seq_len == h * w, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(b, h, w, c)

        # Conv_X
        conv_x = self.conv_block(x.permute(0, 3, 1, 2))
        conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
            attn_mask = attn_mask
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nw*b, window_size, window_size, c
        x_windows = x_windows.view(-1, self.window_size * self.window_size, c)  # nw*b, window_size*window_size, c

        # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
        attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
        shifted_x = window_reverse(attn_windows, self.window_size, h, w)  # b h' w' c

        # reverse cyclic shift
        if self.shift_size > 0:
            attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            attn_x = shifted_x
        attn_x = attn_x.view(b, h * w, c)

        # FFN
        x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: b, h*w, c
        """
        h, w = self.input_resolution
        b, seq_len, c = x.shape
        assert seq_len == h * w, 'input feature has wrong size'
        assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'

        x = x.view(b, h, w, c)

        x0 = x[:, 0::2, 0::2, :]  # b h/2 w/2 c
        x1 = x[:, 1::2, 0::2, :]  # b h/2 w/2 c
        x2 = x[:, 0::2, 1::2, :]  # b h/2 w/2 c
        x3 = x[:, 1::2, 1::2, :]  # b h/2 w/2 c
        x = torch.cat([x0, x1, x2, x3], -1)  # b h/2 w/2 4*c
        x = x.view(b, -1, 4 * c)  # b h/2*w/2 4*c

        x = self.norm(x)
        x = self.reduction(x)

        return x


class OCAB(nn.Module):
    # overlapping cross-attention block

    def __init__(self, dim,
                 input_resolution,
                 window_size,
                 overlap_ratio,
                 num_heads,
                 qkv_bias=True,
                 qk_scale=None,
                 mlp_ratio=2,
                 norm_layer=nn.LayerNorm
                 ):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.overlap_win_size = int(window_size * overlap_ratio) + window_size

        self.norm1 = norm_layer(dim)
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size,
                                padding=(self.overlap_win_size - window_size) // 2)

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1),
                        num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

        self.proj = nn.Linear(dim, dim)

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU)

    def forward(self, x, x_size, rpi):
        h, w = x_size
        b, _, c = x.shape

        shortcut = x
        x = self.norm1(x)
        x = x.view(b, h, w, c)

        qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2)  # 3, b, c, h, w
        q = qkv[0].permute(0, 2, 3, 1)  # b, h, w, c
        kv = torch.cat((qkv[1], qkv[2]), dim=1)  # b, 2*c, h, w

        # partition windows
        q_windows = window_partition(q, self.window_size)  # nw*b, window_size, window_size, c
        q_windows = q_windows.view(-1, self.window_size * self.window_size, c)  # nw*b, window_size*window_size, c

        kv_windows = self.unfold(kv)  # b, c*w*w, nw
        kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', nc=2, ch=c,
                               owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous()  # 2, nw*b, ow*ow, c
        k_windows, v_windows = kv_windows[0], kv_windows[1]  # nw*b, ow*ow, c

        b_, nq, _ = q_windows.shape
        _, n, _ = k_windows.shape
        d = self.dim // self.num_heads
        q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3)  # nw*b, nH, nq, d
        k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)  # nw*b, nH, n, d
        v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)  # nw*b, nH, n, d

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
            self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size,
            -1)  # ws*ws, wse*wse, nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, ws*ws, wse*wse
        attn = attn + relative_position_bias.unsqueeze(0)

        attn = self.softmax(attn)
        attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim)
        x = window_reverse(attn_windows, self.window_size, h, w)  # b h w c
        x = x.view(b, h * w, self.dim)

        x = self.proj(x) + shortcut

        x = x + self.mlp(self.norm2(x))
        return x


class AttenBlocks(nn.Module):
    """ A series of attention blocks for one RHAG.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 window_size,
                 compress_ratio,
                 squeeze_factor,
                 conv_scale,
                 overlap_ratio,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            HAB(
                dim=dim,
                input_resolution=input_resolution,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2,
                compress_ratio=compress_ratio,
                squeeze_factor=squeeze_factor,
                conv_scale=conv_scale,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer) for i in range(depth)
        ])

        # OCAB
        self.overlap_attn = OCAB(
            dim=dim,
            input_resolution=input_resolution,
            window_size=window_size,
            overlap_ratio=overlap_ratio,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            mlp_ratio=mlp_ratio,
            norm_layer=norm_layer
        )

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, x_size, params):
        for blk in self.blocks:
            x = blk(x, x_size, params['rpi_sa'], params['attn_mask'])

        x = self.overlap_attn(x, x_size, params['rpi_oca'])

        if self.downsample is not None:
            x = self.downsample(x)
        return x


class RHAG(nn.Module):
    """Residual Hybrid Attention Group (RHAG).
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        img_size: Input image size.
        patch_size: Patch size.
        resi_connection: The convolutional block before residual connection.
    """

    def __init__(self,
                 dim,
                 input_resolution,
                 depth,
                 num_heads,
                 window_size,
                 compress_ratio,
                 squeeze_factor,
                 conv_scale,
                 overlap_ratio,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False,
                 img_size=224,
                 patch_size=4,
                 resi_connection='1conv'):
        super(RHAG, self).__init__()

        self.dim = dim
        self.input_resolution = input_resolution

        self.residual_group = AttenBlocks(
            dim=dim,
            input_resolution=input_resolution,
            depth=depth,
            num_heads=num_heads,
            window_size=window_size,
            compress_ratio=compress_ratio,
            squeeze_factor=squeeze_factor,
            conv_scale=conv_scale,
            overlap_ratio=overlap_ratio,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            drop=drop,
            attn_drop=attn_drop,
            drop_path=drop_path,
            norm_layer=norm_layer,
            downsample=downsample,
            use_checkpoint=use_checkpoint)

        if resi_connection == '1conv':
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == 'identity':
            self.conv = nn.Identity()

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)

        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)

    def forward(self, x, x_size, params):
        return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding
    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)  # b Ph*Pw c
        if self.norm is not None:
            x = self.norm(x)
        return x


class PatchUnEmbed(nn.Module):
    r""" Image to Patch Unembedding
    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1])  # b Ph*Pw c
        return x


class Upsample(nn.Sequential):
    """Upsample module.
    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.
    """

    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
        super(Upsample, self).__init__(*m)


class HAT(nn.Module):
    r""" Hybrid Attention Transformer
        A PyTorch implementation of : `Activating More Pixels in Image Super-Resolution Transformer`.
        Some codes are based on SwinIR.
    Args:
        img_size (int | tuple(int)): Input image size. Default 64
        patch_size (int | tuple(int)): Patch size. Default: 1
        in_chans (int): Number of input image channels. Default: 3
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
        upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
        img_range: Image range. 1. or 255.
        upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
        resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
    """

    def __init__(self,
                 in_chans=3,
                 img_size=64,
                 patch_size=1,
                 embed_dim=96,
                 depths=(6, 6, 6, 6),
                 num_heads=(6, 6, 6, 6),
                 window_size=7,
                 compress_ratio=3,
                 squeeze_factor=30,
                 conv_scale=0.01,
                 overlap_ratio=0.5,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm,
                 ape=False,
                 patch_norm=True,
                 use_checkpoint=False,
                 upscale=2,
                 img_range=1.,
                 upsampler='',
                 resi_connection='1conv',
                 **kwargs):
        super(HAT, self).__init__()

        self.window_size = window_size
        self.shift_size = window_size // 2
        self.overlap_ratio = overlap_ratio

        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler

        # relative position index
        relative_position_index_SA = self.calculate_rpi_sa()
        relative_position_index_OCA = self.calculate_rpi_oca()
        self.register_buffer('relative_position_index_SA', relative_position_index_SA)
        self.register_buffer('relative_position_index_OCA', relative_position_index_OCA)

        # ------------------------- 1, shallow feature extraction ------------------------- #
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        # ------------------------- 2, deep feature extraction ------------------------- #
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = embed_dim
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=embed_dim,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # merge non-overlapping patches into image
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=embed_dim,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build Residual Hybrid Attention Groups (RHAG)
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = RHAG(
                dim=embed_dim,
                input_resolution=(patches_resolution[0], patches_resolution[1]),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                compress_ratio=compress_ratio,
                squeeze_factor=squeeze_factor,
                conv_scale=conv_scale,
                overlap_ratio=overlap_ratio,
                mlp_ratio=self.mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # no impact on SR results
                norm_layer=norm_layer,
                downsample=None,
                use_checkpoint=use_checkpoint,
                img_size=img_size,
                patch_size=patch_size,
                resi_connection=resi_connection)
            self.layers.append(layer)
        self.norm = norm_layer(self.num_features)

        # build the last conv layer in deep feature extraction
        if resi_connection == '1conv':
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == 'identity':
            self.conv_after_body = nn.Identity()

        # ------------------------- 3, high quality image reconstruction ------------------------- #
        if self.upsampler == 'pixelshuffle':
            # for classical SR
            self.conv_before_upsample = nn.Sequential(
                nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def calculate_rpi_sa(self):
        # calculate relative position index for SA
        coords_h = torch.arange(self.window_size)
        coords_w = torch.arange(self.window_size)
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size - 1
        relative_coords[:, :, 0] *= 2 * self.window_size - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        return relative_position_index

    def calculate_rpi_oca(self):
        # calculate relative position index for OCA
        window_size_ori = self.window_size
        window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size)

        coords_h = torch.arange(window_size_ori)
        coords_w = torch.arange(window_size_ori)
        coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, ws, ws
        coords_ori_flatten = torch.flatten(coords_ori, 1)  # 2, ws*ws

        coords_h = torch.arange(window_size_ext)
        coords_w = torch.arange(window_size_ext)
        coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, wse, wse
        coords_ext_flatten = torch.flatten(coords_ext, 1)  # 2, wse*wse

        relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None]  # 2, ws*ws, wse*wse

        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # ws*ws, wse*wse, 2
        relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1

        relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1
        relative_position_index = relative_coords.sum(-1)
        return relative_position_index

    def calculate_mask(self, x_size):
        # calculate attention mask for SW-MSA
        h, w = x_size
        img_mask = torch.zeros((1, h, w, 1))  # 1 h w 1
        h_slices = (slice(0, -self.window_size), slice(-self.window_size,
                                                       -self.shift_size), slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size), slice(-self.window_size,
                                                       -self.shift_size), slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # nw, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x_size = (x.shape[2], x.shape[3])

        # Calculate attention mask and relative position index in advance to speed up inference.
        # The original code is very time-consuming for large window size.
        attn_mask = self.calculate_mask(x_size).to(x.device)
        params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA,
                  'rpi_oca': self.relative_position_index_OCA}

        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x, x_size, params)

        x = self.norm(x)  # b seq_len c
        x = self.patch_unembed(x, x_size)

        return x

    def forward(self, x):
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == 'pixelshuffle':
            # for classical SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))

        x = x / self.img_range + self.mean

        return x

def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1):
    """
    Decode predicted object bounding box coordinates from anchor points and distribution.

    Args:
        pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).
        pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).
        anchor_points (torch.Tensor): Anchor points, (h*w, 2).
    Returns:
        (torch.Tensor): Predicted rotated bounding boxes, (bs, h*w, 4).
    """
    lt, rb = pred_dist.split(2, dim=dim)
    cos, sin = torch.cos(pred_angle), torch.sin(pred_angle)
    # (bs, h*w, 1)
    xf, yf = ((rb - lt) / 2).split(1, dim=dim)
    x, y = xf * cos - yf * sin, xf * sin + yf * cos
    xy = torch.cat([x, y], dim=dim) + anchor_points
    return torch.cat([xy, lt + rb], dim=dim)


class Proto(nn.Module):
    """YOLOv8 mask Proto module for segmentation models."""

    def __init__(self, c1, c_=256, c2=32):
        """
        Initializes the YOLOv8 mask Proto module with specified number of protos and masks.

        Input arguments are ch_in, number of protos, number of masks.
        """
        super().__init__()
        self.cv1 = Conv(c1, c_, k=3)
        self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
        self.cv2 = Conv(c_, c_, k=3)
        self.cv3 = Conv(c_, c2)

    def forward(self, x):
        """Performs a forward pass through layers using an upsampled input image."""
        return self.cv3(self.cv2(self.upsample(self.cv1(x))))


def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))


class DFL(nn.Module):
    """
    Integral module of Distribution Focal Loss (DFL).
    Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    """

    def __init__(self, c1=16):
        """Initialize a convolutional layer with a given number of input channels."""
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1

    def forward(self, x):
        """Applies a transformer layer on input tensor 'x' and returns a tensor."""
        b, c, a = x.shape  # batch, channels, anchors
        return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
        # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)

class HATHead(nn.Module):
    """YOLOv8 Detect head for detection models."""
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=()):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3),  HAT(c2), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), HAT(c3),  nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()


    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV ops
            box = x_cat[:, :self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides

        if self.export and self.format in ('tflite', 'edgetpu'):
            # Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:
            # https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309
            # See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695
            img_h = shape[2] * self.stride[0]
            img_w = shape[3] * self.stride[0]
            img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
            dbox /= img_size

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)




if __name__ == "__main__":
    # Generating Sample image
    image1 = (1, 64, 32, 32)
    image2 = (1, 128, 16, 16)
    image3 = (1, 256, 8, 8)

    image1 = torch.rand(image1)
    image2 = torch.rand(image2)
    image3 = torch.rand(image3)
    image = [image1, image2, image3]
    channel = (64, 128, 256)
    # Model
    mobilenet_v1 = HATHead(nc=80, ch=channel)

    out = mobilenet_v1(image)
    print(out)


四、HATHead的添加方法

这个添加方式和之前的变了一下,以后的添加方法都按照这个来了,是为了和群内的文件适配。


4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四 

按照我的进行添加即可,当然其中有些检测头你们的文件中可能没有,无需理会,主要看其周围的代码一直来寻找即可!


4.5 修改五

按照我下面的添加!


4.6 修改六 

注意!!!注意!!!

此处在YOLOv8.1版本之后以及删除了不用改了,但是如果你是老版本此处需要修改,所以如果你的是新版本就不用修改了,如果是老版本的就需要修改(因为群里文件是新版本的下面的图片中的红框标记的代码换成本文的HATHead即可)。


4.7 修改七 

注意!!!注意!!!

此处在YOLOv8.1版本之后以及删除了不用改了,但是如果你是老版本此处需要修改,所以如果你的是新版本就不用修改了,如果是老版本的就需要修改(因为群里文件是新版本的下面的图片中的红框标记的代码换成本文的HATHead即可)。


4.8 修改八 

同理


4.9 修改九 

这里有一些不一样,我们需要加一行代码

        else:
            return 'detect'

为啥呢不一样,因为这里的m在代码执行过程中会将你的代码自动转换为小写,所以直接else方便一点,以后出现一些其它分割或者其它的教程的时候在提供其它的修改教程。 

​​​


4.9 修改十

同理


五、 目标检测的yaml文件

5.1 yaml文件

复制如下的yaml文件即可运行。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, HATHead, [nc]]  # Detect(P3, P4, P5)

5.2 运行记录


六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/536511.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Windows Edge 兼容性问题修复:提升用户体验的关键步骤

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

【随笔】Git 基础篇 -- 远程仓库 git clone(二十五)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

FTP所有操作

产生告警原理&#xff1a; 告警中出现 FTP STOP 关键字。Hawkeye keylogger木马名

iPad 无法解锁?修复 iPad 滑动解锁不起作用的 9 个解决方案

“我的 iPad Pro 一整天都工作正常&#xff0c;直到 20 分钟前。当我解锁它时&#xff0c;它不让我向上滑动。屏幕有响应&#xff0c;但我的 iPad 无法解锁。是否有其他人遇到过这种情况并找到了解决方法&#xff1f;解决方案&#xff1f;” ——来自 Apple 支持社区 iPad 屏幕…

前端开发攻略---根据音频节奏实时绘制不断变化的波形图。深入剖析如何通过代码实现音频数据的可视化。

1、演示 2、代码分析 逐行解析 JavaScript 代码块&#xff1a; const audioEle document.querySelector(audio) const cvs document.querySelector(canvas) const ctx cvs.getContext(2d)这几行代码首先获取了 <audio> 和 <canvas> 元素的引用&#xff0c;并使用…

Quartz + SpringBoot 实现分布式定时任务

文章目录 前言一、分布式定时任务解决方案二、Quartz是什么&#xff1f;1.quartz简介2.quartz的优缺点 二、Quartz分布式部署总结 前言 因为应用升级&#xff0c;由之前的单节点微服务应用升级为集群微服务应用&#xff0c;所以之前的定时任务Spring Scheduled不再适用了&…

进程等待waitwaitpid

文章目录 进程等待进程等待的必要性进程等待的方法waitwaitpidstatus 非阻塞等待 进程等待 任何子进程&#xff0c;在退出的情况下&#xff0c;一般必须要被父进程等待 进程等待的必要性 1.父进程通过等待&#xff0c;解决子进程退出的僵尸问题&#xff0c;回收系统资源。 2.…

基于springboot实现知识管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现知识管理系统演示 摘要 随着信息互联网信息的飞速发展&#xff0c;无纸化作业变成了一种趋势&#xff0c;针对这个问题开发一个专门适应师生作业交流形式的网站。本文介绍了知识管理系统的开发全过程。通过分析企业对于知识管理系统的需求&#xff0c;创建了…

012:vue结合纯CSS实现蛇形流程图/步骤条

文章目录 1. 实现效果2. 实现代码 1. 实现效果 2. 实现代码 <template><div class"container"><div v-for"(item, index) in list" class"grid-item"><div class"step">step{{index1}}</div></div&…

大厂Java笔试题之对完全数的处理

题目&#xff1a;完全数&#xff08;Perfect number&#xff09;&#xff0c;又称完美数或完备数&#xff0c;是一些特殊的自然数。 它所有的真因子&#xff08;即除了自身以外的约数&#xff09;的和&#xff08;即因子函数&#xff09;&#xff0c;恰好等于它本身。 例如&…

赋能力量,幸福花开 ——罗湖区懿米阳光开启全职妈妈社工培育计划

最美人间四月天&#xff0c;不负春光不负卿。 四月&#xff0c;迎来了全国社会工作师考试报名的日子&#xff0c;罗湖区全职妈妈妇联与罗湖区阳光妈妈妇联在服务过程中发现&#xff0c;全职妈妈们有获得社会工作师职业资格证的需求&#xff0c;为了更好地针对这一需求&#xf…

YOLOv5原创优化 : loss优化 | 一种新的自适应阈值焦点损失函数loss,增强目标特征,助力红外小目标暴力涨点

💡💡💡问题点:注意到红外小目标图像中目标与背景之间存在极大的不平衡,这使得模型更加关注背景特征而不是目标特征 💡💡💡解决对策:提出了一种新的自适应阈值焦点损失函数,该函数将目标和背景解耦,并利用自适应机制来调整损失权重,迫使模型将更多的注意力分配…

vs调试教程

官网链接&#xff1a; Microsoft Learn&#xff1a;培养开拓职业生涯新机遇的技能通过文档和培训习得技术技能、获得认证并与社区建立联系https://learn.microsoft.com/zh-cn/调试教程 调试器文档 - Visual Studio (Windows) | Microsoft Learn浏览文档&#xff0c;以帮助你使…

大厂Java笔试题之与7有关的数

题目&#xff1a;输出 1到n之间 的与 7 有关数字的个数。 一个数与7有关是指这个数是 7 的倍数&#xff0c;或者是包含 7 的数字&#xff08;如 17 &#xff0c;27 &#xff0c;37 ... 70 &#xff0c;71 &#xff0c;72 &#xff0c;73...&#xff09; 比如输入20&#xff0c;…

Laravel/Lumen 中使用 Echo + Socket.IO-Client 实现网页即时通讯广播

此处以 Lumen 9 框架为例说明如何调试通过 Echo 服务端以及客户端 安装 Redis composer require illuminate/redis&#xff0c;如果安装失败需要根据当前框架版本指定所需 Redis 版本&#xff0c;例如&#xff1a;composer require illuminate/redis "^9.0" Broa…

室外超声波自动气象站设备

TH-CQX10随着科技的进步和气象学的发展&#xff0c;气象监测设备已经从传统的有人值守模式转变为自动化、智能化的无人值守模式。室外超声波自动气象站设备就是这一转变的杰出代表。以下是室外超声波自动气象站设备的原理、应用及其优势&#xff1a; 1、室外超声波自动气象站设…

使用 Axios 处理 AxiosError 的三种常见方法

在使用 Axios 时处理 AxiosError 有几种常见的方法: 使用 try-catch 语句捕获异常: try {const response await axios.get(/api/data);// 处理响应数据 } catch (error) {if (error.response) {// 请求成功但状态码不在 2xx 范围console.log(error.response.data);console.l…

2024比特币减半,Web3的“1995时刻”即将到来

随着比特币减半的到来&#xff0c;加密货币市场迎来了一个关键的转折点。2024年的比特币减半不仅是对比特币供应和挖矿激励的一次重大调整&#xff0c;更是对整个Web3应用领域产生深远影响的事件。 首先&#xff0c;比特币减半的事件本身就为市场带来了一种稀缺性的概念&#…

绝地求生:AUG爆裂弹球黑货箱:街机动漫风格大家会喜欢吗?

大好&#xff0c;我闲游盒&#xff01; 4.10更新后&#xff0c;AUG的新成长型也出来了&#xff0c;更新后我觉得AUG变好用了一点&#xff0c;不知道大家有没有感觉出来&#xff1f; 宝箱概率 本期主角 AUG-爆裂弹球&#xff08;紫色配粉红色&#xff09; 本次的AUG我才升到5级…

蓝桥备赛——组合数、其他技巧

对字符串进行permutations排列组合 from itertools import permutations a abc #对字符串进行permutations排列组合 for i in permutations(a,3):x .join(i)print (x,end ) print (\n------------------------------------) permutations后面的参数&#xff0c;第一个表示…
最新文章