matlab使用教程(6)—线性方程组的求解

        进行科学计算时,最重要的一个问题是对联立线性方程组求解。在矩阵表示法中,常见问题采用以下形式:给定两个矩阵 A 和 b,是否存在一个唯一矩阵 x 使 Ax = b 或 xA = b?
        考虑一维示例具有指导意义。例如,方程
        7x = 21
        是否具有唯一解?
        答案当然是肯定的。方程有唯一解 x = 3。通过除法很容易求得该解:
        x = 21/7 = 3。
        该解通常不是通过计算 7 的倒数求得的,即先计算 7 –1 = 0.142857...,然后将 7 –1 乘以 21。这将需要更多的工作,而且如果 7 –1 以有限位数表示时,准确性会较低。类似注意事项也适用于多个未知数的线性方程组;MATLAB 在解此类方程时不会计算矩阵的逆。
        尽管这不是标准的数学表示法,但 MATLAB 使用标量示例中常见的除法术语来描述常规联立方程组的解。斜杠 / 和反斜杠 \ 这两个除号分别对应 MATLAB 函数 mrdivide mldivide。两种运算符分别用于未知矩阵出现在系数矩阵左侧或右侧的情况:
x = b/A
        表示使用 mrdivide 获得的矩阵方程 xA = b 的解。
x = A\b
        表示使用 mldivide 获得的矩阵方程 Ax = b 的解。
        考虑将方程 Ax = b 或 xA = b 的两端“除以”A。系数矩阵 A 始终位于“分母”中。
        x = A\b 的维度兼容性条件要求两个矩阵 A b 的行数相同。这样,解 x 的列数便与 b 的列数相同,并且其行维度等于 A 的列维度。对于 x = b/A ,行和列的角色将会互换。
        实际上,Ax=b 形式的线性方程组比 xA=b 形式的线性方程组更常见。因此,反斜杠的使用频率要远高于斜杠的使用频率。本节其余部分将重点介绍反斜杠运算符;斜杠运算符的对应属性可以从以下恒等式推知:
(b/A)' = (A'\b').
        系数矩阵 A 不需要是方阵。如果 A 的大小为 m×n,则有三种情况:
        m = n
        方阵方程组。求精确解。
        m > n
        超定方程组,即方程个数多于未知数个数。求最小二乘解。
        m < n
        欠定方程组,即方程个数少于未知数个数。使用最多 m 个非零分量求基本解。

1mldivide 算法

        mldivide 运算符使用不同的求解器来处理不同类型的系数矩阵。通过检查系数矩阵自动诊断各种情况。
        线性方程组 Ax = b 的通解描述了所有可能的解。可以通过以下方法求通解:
        1求对应的齐次方程组 Ax = 0 的解。使用 null 命令通过键入 null(A) 来执行此操作。这会将解空间的基向量恢复为 Ax = 0。任何解都是基向量的线性组合。
        2求非齐次方程组 Ax = b 的特定解。然后,可将 Ax = b 的任何解写成第 2 步中的 Ax = b 的特定解加上第 1 步中的基向量的线性组合之和。本节其余部分将介绍如何使用 MATLAB 求 Ax = b 的特定解,如第 2 步中所述。

2方阵方程组

        最常见的情况涉及到一个方阵系数矩阵 A 和一个右侧单列向量 b

2.1非奇异系数矩阵

        如果矩阵 A 是非奇异矩阵,则解 x = A\b 的大小与 b 的大小相同。例如:
A = pascal(3);
u = [3; 1; 4];
x = A\u
x =
10
-12
5
        可以确认 A*x 恰好等于 u。如果 A b 为方阵并且大小相同,则 x= A\b 也具有相同大小:
b = magic(3);
X = A\b
X =
19 -3 -1
-17 4 13
6 0 -6
        可以确认 A*x 恰好等于 b。以上两个示例具有确切的整数解。这是因为系数矩阵选为 pascal(3) ,这是满秩矩阵(非奇异的)。

2.2奇异系数矩阵

        如果方阵 A 不包含线性无关的列,则该矩阵为奇异矩阵。如果 A 为奇异矩阵,则 Ax = b 的解将不存在或不唯一。如果 A 接近奇异或检测到完全奇异性,则反斜杠运算符 A\b 会发出警告。如果 A 为奇异矩阵并且 Ax = b 具有解,可以通过键入以下内容求不是唯一的特定解
P = pinv(A)*b
        pinv(A) 是 A 的伪逆。如果 Ax = b 没有精确解,则 pinv(A) 将返回最小二乘解。例如:
A = [ 1 3 7 ; -1 4 4 ; 1 10 18 ] 为奇异矩阵,可以通过键入以下内容进行验证:
rank(A)
ans =
2
        由于 A 不是满秩,它有一些等于零的奇异值。对于 b =[5;2;12] ,方程 Ax = b 具有精确解:
pinv(A)*b
ans =
0.3850
-0.1103
0.7066
        通过键入以下内容验证 pinv(A)*b 是否为精确解
A*pinv(A)*b
ans =
5.0000
2.0000
12.0000
        但是,如果 b = [3;6;0] ,则 Ax = b 没有精确解。在这种情况下, pinv(A)*b 会返回最小二
乘解。键入
A*pinv(A)*b
ans =
-1.0000
4.0000
2.0000
        则不会返回原始向量 b。通过得到增广矩阵 [A b] 的简化行阶梯形式,可以确定 Ax = b 是否具有精确解。为此,对于此示例请输入
rref([A b])
ans =
1.0000 0 2.2857 0
0 1.0000 1.5714 0
0 0 0 1.0000
        由于最下面一行全部为零(最后一项除外),因此该方程无解。在这种情况下,pinv(A) 会返回最小二乘解。

3超定方程组

        此示例说明在对试验数据的各种曲线拟合中通常会如何遇到超定方程组。在多个不同的时间值 t 对数量 y 进行测量以生成以下观测值。可以使用以下语句输入数据并在表中查看该数据。
t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';
B = table(t,y)
B=6×2 table
t y
___ ____
0 0.82
0.3 0.72
0.8 0.63
1.1 0.6
1.6 0.55
2.3 0.5
        尝试使用指数衰减函数对数据进行建模
 
        上一方程表明,向量 y 应由两个其他向量的线性组合来逼近。一个是元素全部为 1 的常向量,另一个是带有分量 exp(-t) 的向量。未知系数 c 1 c 2 可以通过执行最小二乘拟合来计算,这样会最大限度地减小数据与模型偏差的平方和。在两个未知系数的情况下有六个方程,用 6×2 矩阵表示。
E = [ones(size(t)) exp(-t)]
E = 6×2
1.0000 1.0000
1.0000 0.7408
1.0000 0.4493
1.0000 0.3329
1.0000 0.2019
1.0000 0.1003
        使用反斜杠运算符获取最小二乘解。
c = E\y
c = 2×1
0.4760
0.3413
        也就是说,对数据的最小二乘拟合为
 
        以下语句按固定间隔的 t 增量为模型求值,然后与原始数据一同绘制结果:
T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

        E*c y 不完全相等,但差值可能远小于原始数据中的测量误差。如果矩形矩阵 A 没有线性无关的列,则该矩阵秩亏。如果 A 秩亏,则 AX = B 的最小二乘解不唯一。如果A 秩亏,则 A\B 会发出警告,并生成一个最小二乘解。您可以使用 lsqminnorm 求在所有解中具有最小范数的解 X

4欠定方程组

        本例演示了欠定方程组的解不唯一的情况。欠定线性方程组包含的未知数比方程多。MATLAB 矩阵左除运算求基本最小二乘解,对于 m × n 系数矩阵,它最多有 m 个非零分量。
以下是一个简单的随机示例:
R = [6 8 7 3; 3 5 4 1]
rng(0);
b = randi(8,2,1)
R =
6 8 7 3
3 5 4 1
b =
7
8
线性方程组 Rp = b 有两个方程,四个未知数。由于系数矩阵包含较小的整数,因此适合使用 format 命令以有理格式显示解。通过以下命令可获取特定解
format rat
p = R\b
p =
0
17/7
0
-29/7
        其中一个非零分量为 p(2) ,因为 R(:,2) 是具有最大范数的 R 的列。另一个非零分量为 p(4) ,因为 R(:,4) 在消除 R(:,2) 后起控制作用。欠定方程组的完全通解可以通过 p 加上任意零空间向量线性组合来表示,可以使用 null 函数(使用请求有理基的选项)计算该空间向量。
Z = null(R,'r')
Z =
-1/2 -7/6
-1/2 1/2
1 0
0 1
        可以确认 R*Z 为零,并且残差 R*x - b 远远小于任一向量 x(其中x = p + Z*q)  由于 Z 的列是零空间向量,因此 Z*q 是以下向量的线性组合:
        为了说明这一点,选择任意 q 并构造 x,计算残差的范数。
q = [-2; 1];
x = p + Z*q;
format short
norm(R*x - b)
ans =
2.6645e-15
        如果有无限多个解,则最小范数解具有特别意义。您可以使用 lsqminnorm 计算最小范数最小二乘解。该解具有 norm(p) 的最小可能值。
p = lsqminnorm(R,b)
p =
-207/137
365/137
79/137
-424/137

5多右端线性方程组的求解

        某些问题涉及求解具有相同系数矩阵 A 但具有不同右端 b 的线性方程组。如果可以同时使用不同的 b 值,则可以将 b 构造为多列矩阵,并使用单个反斜杠命令求解所有方程组: X = A\[b1 b2 b3 …]。但是,有时不同的 b 值并非全部同时可用,也就是说,您需要连续求解若干方程组。如果使用斜杠 (/) 或反斜杠 (\) 求解其中一个方程组,则该运算符会对系数矩阵 A 进行分解,并使用此矩阵分解来求解。然而,随后每次使用不同的 b 求解类似方程组时,运算符都会对 A 进行同样的分解,而这是一次冗余计算。此问题的求解是预先计算 A 的分解,然后重新使用因子对 b 的不同值求解。但是,实际上,以这种方式预先计算分解可能很困难,因为需要知道要计算的分解(LU、LDL、Cholesky 等)以及如何乘以因子才能对问题求解。例如,使用 LU 分解,您需要求解两个线性方程组才能求解原始方程组 Ax = b:
[L,U] = lu(A);
x = U \ (L \ b);
        对于具有若干连续右端的线性方程组,建议使用 decomposition 对象求解。借助这些对象,您可利用预先计算矩阵分解带来的性能优势,而不必了解如何使用矩阵因子。您可以将先前的 LU 分解替换为:
dA = decomposition(A,'lu');
x = dA\b;
        如果您不确定要使用哪种分解,decomposition(A) 会根据 A 的属性选择正确的类型,类似于反斜杠的功能。
        以下简单测试验证了此方法可能带来的性能优势。该测试分别使用反斜杠 (\) 和 decomposition 对同一稀疏线性方程组求解 100 次。
n = 1e3;
A = sprand(n,n,0.2) + speye(n);
b = ones(n,1);
% Backslash solution
tic
for k = 1:100
x = A\b;
end
toc
Elapsed time is 9.006156 seconds.
% decomposition solution
tic
dA = decomposition(A);
for k = 1:100
x = dA\b;
end
toc
Elapsed time is 0.374347 seconds.
        对于这个问题,decomposition 求解比单独使用反斜杠要快得多,而语法仍然很简单。

6迭代法

        如果系数矩阵 A 很大并且是稀疏矩阵,分解方法一般情况下将不会有效。迭代方法可生成一系列近似解。MATLAB 提供了多个迭代方法来处理大型的稀疏输入矩阵。

7多线程计算

        对于许多线性代数函数和按元素的数值函数,MATLAB 软件支持多线程计算。这些函数将自动在多个线程上执行。要使函数或表达式在多个 CPU 上更快地执行,必须满足许多条件:
1 函数执行的运算可轻松划分为并发执行的多个部分。这些部分必须能够在进程之间几乎不通信的情况下执行。它们应需要很少的序列运算。
2数据大小足以使并发执行的任何优势在重要性方面超过对数据分区和管理各个执行线程所需的时间。例如,仅当数组包含数千个或以上的元素时,大多数函数才会加速。
3运算未与内存绑定;处理时间不受内存访问时间控制。一般而言,复杂函数比简单函数速度更快。如果启用多线程, inv lscov linsolve mldivide 将会对大型双精度数组(约 10,000 个元素或更多)大幅增加速度。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/54169.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis - 缓存的双写一致性

概念&#xff1a; 当修改了数据库的数据也要同时更新缓存的数据&#xff0c;缓存和数据库的数据要保持一致 那为什么会有不一致的情况呢&#xff1f; 如果不追求一致性&#xff0c;正常有两种做法 先修改数据库 后删除旧的缓存先删除旧的缓存 再修改数据库 我们以先删除旧的…

【玩转pandas系列】数据清洗(文末送书福利)

文章目录 一、重复值检测二、元素替换1️⃣ 元素替换replace2️⃣ 数据映射map 三、修改索引1️⃣ 修改索引名rename2️⃣ 设置索引和重置索引 四、数据处理1️⃣ apply与applymap2️⃣ transform 五、异常值处理六、抽样聚合函数1️⃣ 抽样2️⃣ 数学函数 七、分组聚合&#x…

数字世界未来十年面貌如何?

随着科技的不断发展和创新&#xff0c;数字世界将在未来十年迎来一系列革命性的变化和进步。以下是数字世界未来十年面貌的一些预测&#xff1a; 人工智能全面普及&#xff1a;人工智能将逐渐渗透到我们生活的方方面面。从智能家居到智能交通&#xff0c;从个性化医疗到智能零售…

用python编写一个小程序,如何用python编写软件

大家好&#xff0c;给大家分享一下用python编写一个小程序&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 1、python可以写手机应用程序吗&#xff1f; 我想有人曲解意思了&#xff0c;人家说用python开发渣蔽一个手机app&#xff0c;不是…

零基础C#编写上位机如何入门?

学习C#基础语法和.NET框架&#xff0c;掌握基本编程概念和语法&#xff0c;例如数据类型、类、对象、继承、多态、异常处理等。学习WinForm窗体应用程序开发技术&#xff0c;掌握窗体应用程序的设计和开发&#xff0c;例如控件的使用、事件驱动编程、窗体的布局与设计等。学习数…

《向量数据库指南》——Milvus Cloud 2.3 和 2.4 版本的重要变化

Milvus Cloud2.3 和 2.4 版本的重要变化。 首先是 Milvus Cloud2.3 将支持 Json 数据类型,在此基础上亦会支持 Schemaless。此前,用户在使用 Milvus Cloud的过程中会先定一个静态 Schema,此时,如果在实际业务层面如果多了几个 feature 或者 Metadata,就意味着数据需要重新…

什么是架构 架构图

如何成为一名架构师,架构师成长之路_golang架构师成长之路_个人渣记录仅为自己搜索用的博客-CSDN博客 如何画架构图_个人渣记录仅为自己搜索用的博客-CSDN博客 如何画好一张架构图&#xff1f;&#xff08;内含知识图谱&#xff09; - 知乎 什么是架构&#xff1f;要表达的到…

代码随想录算法训练营第二十八天 | Leetcode随机抽题检测

Leetcode随机抽题检测--使用题库&#xff1a;Leetcode热题100 1 两数之和未看解答自己编写的青春版重点题解的代码日后再次复习重新写 49 字母异位词分组未看解答自己编写的青春版重点题解的代码日后再次复习重新写 128 最长连续序列未看解答自己编写的青春版重点关于 left 和 …

黑客技术(网络安全)学习笔记

一、网络安全基础知识 1.计算机基础知识 了解了计算机的硬件、软件、操作系统和网络结构等基础知识&#xff0c;可以帮助您更好地理解网络安全的概念和技术。 2.网络基础知识 了解了网络的结构、协议、服务和安全问题&#xff0c;可以帮助您更好地解决网络安全的原理和技术…

Qt 2. QSerialPortInfo显示串口信息

在ex2.pro 添加&#xff1a; QT serialport//main.cpp #include "ex2.h" #include <QtSerialPort/QtSerialPort> #include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);Ex2 w;w.show();QList<QSerialPortInfo>…

出海拍|疯了!ChatGPT 大规模封号,有钱还不赚?

时代洪流裹挟命运流转&#xff0c;世事变迁暗藏跨境沉浮。 几个月前&#xff0c;OpenAI的创始人之一马斯克曾在社交媒体平台上称赞ChatGPT &#xff1a;“Its a new world. Goodbye homework!”而他所说的ChatGPT 引领着许多AI工具&#xff0c;随后便开始如雨后春笋般出现在我…

刷题学算法

刷题学算法 数据结构 一、数组 1. 数组创建&#xff1a; // 方式1&#xff1a;先创建&#xff0c;再逐个存储元素 String[] cityArray1 new String[5]; cityArray1[0] "北京"; cityArray1[1] "上海"; cityArray1[2] "广州"; cityArray1[3…

【RabbitMQ(day4)】SpringBoot整合RabbitMQ与MQ应用场景说明

一、SpringBoot 中使用 RabbitMQ 导入对应的依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId></dependency>配置配置文件 spring:application:name: rabbitmq-springbo…

linux备份与还原系统(类似window上ghost备份还原)

一、摘要 在linux上进行了几年的开发工作 &#xff08;qt ros&#xff09; 突然发现&#xff0c;现在有公司硬件、笔记本台式机一台占一个系统&#xff0c;导致硬件太浪费&#xff0c;又不能用虚拟机&#xff08;有时候要链接硬件必须物理机&#xff09;怎么办&#xff1f; 二…

【C++】开源:Boost库常用组件配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Boost库常用组件配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c…

CSS font-family 等宽字体

CSS font-family 等宽字体 font-family: "Lucida Console", Consolas, "Courier New", Courier, monospace; font-family: Courier New, Courier, Lucida Console, Consolas, monospace; font-family: Courier, Lucida Console, Consolas, Courier New,…

多赛道出海案例,亚马逊云科技为企业提供全新解决方案实现高速增长

数字化浪潮之下&#xff0c;中国企业的全球化步伐明显提速。从“借帆出海”到“生而全球化”&#xff0c;中国企业实现了从低端制造出口&#xff0c;向技术创新和品牌先导的升级。为助力中国企业业务高效出海&#xff0c;亚马逊云科技于2023年6月9日在深圳大中华喜来登酒店举办…

推荐50个超实用的 Chrome 扩展,建议收藏!

今天来分享 50 个超实用的 Chrome 浏览器扩展&#xff01; JSON Viewer Pro JSON Viewer Pro 用于可视化JSON文件。其核心功能包括&#xff1a; 支持将JSON数据进行格式化&#xff0c;并使用属性或者图表进行展示&#xff1b;使用面包屑深入遍历 JSON 属性&#xff1b;在输入…

【Python机器学习】实验04(1) 多分类(基于逻辑回归)实践

文章目录 多分类以及机器学习实践如何对多个类别进行分类1.1 数据的预处理1.2 训练数据的准备1.3 定义假设函数&#xff0c;代价函数&#xff0c;梯度下降算法&#xff08;从实验3复制过来&#xff09;1.4 调用梯度下降算法来学习三个分类模型的参数1.5 利用模型进行预测1.6 评…

直播预告 | 开源运维工具使用现状以及可持续产品的思考

运维平台自上世纪90年代开始进入中国市场&#xff0c;曾形成以传统四大外企&#xff1a;IBM、BMC、CA、HP为代表的头部厂商&#xff0c;还有一众从网管起家的国内厂商。2010年前后&#xff0c;出现了以Zabbix、Nagios、Cacti为代表的开源工具&#xff0c;后来又陆续出现了Prome…
最新文章