arm 作业 24/4/17

1、主机向从机发送多个字节的数据

主机发送起始信号

主机发送8bit从机地址+1bit写标志(0)

从机回应应答信号

主机发送8bit从机的寄存器地址

从机回应应答信号

主机发送8bit数据

从机回应应答

主机发送8bit数据

从机回应应答

…………

主机发起终止信号

2、主机读取多个字节的数据

主机发起起始信号

主机发送7bit从机地址+1bit写标志

从机回应应答信号

主机发起一个重复的起始信号

主机发送7bit从机地址+1bit读标志

从机回应应答信号

从机发送8bit数据

主机回应应答信号

从机发送8bit数据

…………

主机回应非应答信号

主机发起终止信号

3、si7006.h

#ifndef __SI7006_H__
#define __SI7006_H__

#include "iic.h"
void delay_ms(int ms);
void si7006_init();
unsigned short si7006_read_hum();
short si7006_read_tem();

#endif

si7006.c

#include "si7006.h"

void delay_ms(int ms)
{
	int i,j;
	for(i=0;i<ms;i++)
	{
		for(j=0;j<2000;j++)
		{

		}
	}
}

void si7006_init()
{
    //发送起始信号
    i2c_start();
    //发送7bit从机地址和写标志位   0x80
    i2c_write_byte(0x80);
    //等待从机应答
    i2c_wait_ack();
    //发送寄存器地址0xe6
    i2c_write_byte(0xe6);
    //等待从机应答
    i2c_wait_ack();
    //向从机发送数据0x3a
    i2c_write_byte(0x3a);
    //等待从机应答
    i2c_wait_ack();
    //发送终止信号
    i2c_stop();
}

unsigned short si7006_read_hum()
{
    //主机发起起始信号
    i2c_start();
    //主机发送7位从机地址+1位写标志
    i2c_write_byte(0x80);
    //等待从机应答
    i2c_wait_ack(); 
    //主机发送8位寄存器地址
    i2c_write_byte(0xe5);
    //等待从机应答
    if(i2c_wait_ack()!=0)
    {
        return;
    }
    //主机发起重复起始信号
    i2c_start();
    //主机发送7位从机地址+1位读标志  0x81
    i2c_write_byte(0x81);
    //等待从机应答
    if(i2c_wait_ack()!=0)
    {
        return;
    }
    //延时等待从机测量数据
    delay_ms(100);
    //读取湿度高8位数据  hum_h
    unsigned short hum_h=i2c_read_byte(0);
    //发送应答信号
     i2c_ack();
    //读取湿度低8位数据     hum_l
    unsigned short hum_l=i2c_read_byte(1);
    //发起非应答信号
    i2c_nack();
    //发起终止信号
    i2c_stop();
    //合并高、低8位信号
    unsigned short hum;
    hum=hum_h<<8|hum_l;
    return hum;
}

short si7006_read_tem()
{
    //主机发起起始信号
    i2c_start();
    //主机发送7位从机地址+1位写标志
    i2c_write_byte(0x80);
    //等待从机应答
    i2c_wait_ack(); 
    //主机发送8位寄存器地址
    i2c_write_byte(0xe3);
    //等待从机应答
    if(i2c_wait_ack()!=0)
    {
        return;
    }
    //主机发起重复起始信号
    i2c_start();
    //主机发送7位从机地址+1位读标志  0x81
    i2c_write_byte(0x81);
    //等待从机应答
    if(i2c_wait_ack()!=0)
    {
        return;
    }
    //延时等待从机测量数据
    delay_ms(100);
    //读取湿度高8位数据  hum_h
   short tem_h=i2c_read_byte(0);
    //发送应答信号
     i2c_ack();
    //读取湿度低8位数据     hum_l
    short tem_l=i2c_read_byte(1);
    //发起非应答信号
    i2c_nack();
    //发起终止信号
    i2c_stop();
    //合并高、低8位信号
    short tem;
    tem=tem_h<<8|tem_l;
    return tem;
}

main.c

#include "gpio.h"

//延时函数

#include "si7006.h"



int main()

{

	i2c_init();

	si7006_init();

	unsigned short hum;

	short tem;

	while(1)

	{

		//读取温度和湿度

		hum=si7006_read_hum();

		tem=si7006_read_tem();

		//计算温度湿度数据

		hum=hum*125/65536-6;

		tem=tem*175.72/65536-46.85;

        printf("hum:%d\n",hum);

        printf("tem:%d\n",tem);

        delay_ms(1000);

	}

	return 0;

}

icc.h

#ifndef __IIC_H__
#define __IIC_H__
#include "stm32mp1xx_gpio.h"
#include "stm32mp1xx_rcc.h"

/* 通过程序模拟实现I2C总线的时序和协议
 * GPIOF ---> AHB4
 * I2C1_SCL ---> PF14
 * I2C1_SDA ---> PF15
 *
 * */

#define SET_SDA_OUT     do{GPIOF->MODER &= (~(0x3 << 30)); \
                            GPIOF->MODER |= (0x1 << 30);}while(0)

#define SET_SDA_IN      do{GPIOF->MODER &= (~(0x3 << 30));}while(0)

#define I2C_SCL_H       do{GPIOF->BSRR |= (0x1 << 14);}while(0)
#define I2C_SCL_L       do{GPIOF->BRR |= (0x1 << 14);}while(0)

#define I2C_SDA_H       do{GPIOF->BSRR |= (0x1 << 15);}while(0)
#define I2C_SDA_L       do{GPIOF->BRR |= (0x1 << 15);}while(0)

#define I2C_SDA_READ    (GPIOF->IDR & (0x1 << 15))

void delay_us(void);//微秒延时
void delay(int ms);
void i2c_init(void);//初始化
void i2c_start(void);//起始信号
void i2c_stop(void);//终止信号
void i2c_write_byte(unsigned char  dat);//写一个字节数据
unsigned char i2c_read_byte(unsigned char ack);//读取一个字节数据
unsigned char i2c_wait_ack(void);       //等待应答信号
void i2c_ack(void);//发送应答信号
void i2c_nack(void);//发送非应答信号

#endif 

icc.c

#include "iic.h"

extern void printf(const char* fmt, ...);
/*
 * 函数名 : delay_us
 * 函数功能:延时函数
 * 函数参数:无
 * 函数返回值:无
 * */
void delay_us(void)  //微秒级延时
{
    unsigned int i = 2000;
    while(i--);
}
/*
 * 函数名 : i2c_init
 * 函数功能: i2C总线引脚的初始化, 通用输出,推挽输出,输出速度,
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_init(void)
{
    // 使能GPIOF端口的时钟
    RCC->MP_AHB4ENSETR |= (0x1 << 5);
    // 设置PF14,PF15引脚为通用的输出功能
    GPIOF->MODER &= (~(0xF << 28));
    GPIOF->MODER |= (0x5 << 28);
    // 设置PF14, PF15引脚为推挽输出
    GPIOF->OTYPER &= (~(0x3 << 14));
    // 设置PF14, PF15引脚为高速输出
    GPIOF->OSPEEDR |= (0xF << 28);
    // 设置PF14, PF15引脚的禁止上拉和下拉
    GPIOF->PUPDR &= (~(0xF << 28));
    // 空闲状态SDA和SCL拉高 
    I2C_SCL_H;
    I2C_SDA_H;
}



/*
 * 函数名:i2c_start
 * 函数功能:模拟i2c开始信号的时序
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_start(void)
{
    /*
     * 开始信号:时钟在高电平期间,数据线从高到低的变化
     *     --------
     * SCL         \
     *              --------
     *     ----
     * SDA     \
     *          --------
     * */   
    //确保SDA是输出状态 PF15输出
    SET_SDA_OUT;
    // 空闲状态SDA和SCL拉高 
    I2C_SCL_H;
    I2C_SDA_H;
    delay_us();//延时等待一段时间
    I2C_SDA_L;//数据线拉低
    delay_us();//延时等待一段时间
    I2C_SCL_L;//时钟线拉低,让总线处于占用状态
}

/*
 * 函数名:i2c_stop
 * 函数功能:模拟i2c停止信号的时序
 * 函数参数:无
 * 函数返回值:无
 * */

void i2c_stop(void)
{
    /*
     * 停止信号 : 时钟在高电平期间,数据线从低到高的变化 
     *             ----------
     * SCL        /
     *    --------
     *    ---         -------
     * SDA   X       /
     *    --- -------
     * */
    //确保SDA是输出状态 PF15输出
    SET_SDA_OUT;
    //时钟线拉低
    I2C_SCL_L;//为了修改数据线的电平
    delay_us();//延时等待一段时间
    I2C_SDA_L;//数据线拉低
    delay_us();//延时等待一段时间
    //时钟线拉高
    I2C_SCL_H;
    delay_us();//延时等待一段时间
    I2C_SDA_H;//数据线拉高

}

/*
 * 函数名: i2c_write_byte
 * 函数功能:主机向i2c总线上的从设备写8bits数据
 * 函数参数:dat : 等待发送的字节数据
 * 函数返回值: 无
 * */

void i2c_write_byte(unsigned char dat)
{  
    /*
     * 数据信号:时钟在低电平期间,发送器向数据线上写入数据
     *          时钟在高电平期间,接收器从数据线上读取数据 
     *      ----          --------
     *  SCL     \        /        \
     *           --------          --------
     *      -------- ------------------ ---
     *  SDA         X                  X
     *      -------- ------------------ ---
     *
     *      先发送高位在发送低位 
     * */
    //确保SDA是输出状态 PF15输出
    SET_SDA_OUT;
    unsigned int i;
    for(i=0;i<8;i++)
    {
        //时钟线拉低
         I2C_SCL_L;
         delay_us();//延时
         //0X3A->0011 1010   0X80->10000000
         if(dat&0X80)//最高位为1
         {
            //发送1
            I2C_SDA_H;
         }
         else  //最高位为0
         {
            I2C_SDA_L;//发送0
         }
         delay_us();//延时
         //时钟线拉高,接收器接收
         I2C_SCL_H;
        delay_us();//延时,用于等待接收器接收数据
        delay_us();//延时
        //将数据左移一位,让原来第6位变为第7位
        dat = dat<<1;

    }
    

}

/*
 * 函数名:i2c_read_byte
 * 函数功能: 主机从i2c总线上的从设备读8bits数据, 
 *          主机发送一个应答或者非应答信号
 * 函数参数: 0 : 应答信号   1 : 非应答信号
 * 函数返回值:读到的有效数据
 *
 * */
unsigned char i2c_read_byte(unsigned char ack)
{
    /*
     * 数据信号:时钟在低电平期间,发送器向数据线上写入数据
     *          时钟在高电平期间,接收器从数据线上读取数据 
     *      ----          --------
     *  SCL     \        /        \
     *           --------          --------
     *      -------- ------------------ ---
     *  SDA         X                  X
     *      -------- ------------------ ---
     *
     *      先接收高位, 在接收低位 
     * */
    unsigned int i;
    unsigned char dat;//保存接受的数据
    //将数据线设置为输入
    SET_SDA_IN;
    for(i=0;i<8;i++)
    {
        //先把时钟线拉低,等一段时间,保证发送器发送完毕数据
        I2C_SCL_L;
        delay_us();
        delay_us();//保证发送器发送完数据
        //时钟线拉高,读取数据
        I2C_SCL_H;
        delay_us();
        dat=dat<<1;//数值左移 一定要先左移在赋值,不然数据会溢出
        if(I2C_SDA_READ)//pf15管脚得到了一个高电平输入
        {
            dat |=1; //0000 0110
        }
        else
        {
            dat &=(~0X1);
        }
         delay_us();
    }
        if(ack)
        {
            i2c_nack();//发送非应答信号,不再接收下一次数据
        }
        else
        {
           i2c_ack();//发送应答信号 
        }
    return dat;//将读取到的数据返回
}
/*
 * 函数名: i2c_wait_ack
 * 函数功能: 主机作为发送器时,等待接收器返回的应答信号
 * 函数参数:无
 * 函数返回值:
 *                  0:接收到的应答信号
 *                  1:接收到的非应答信号
 * */
unsigned char i2c_wait_ack(void)
{
    /*
     * 主机发送一个字节之后,从机给主机返回一个应答信号
     *
     *                   -----------
     * SCL              /   M:读    \
     *     -------------             --------
     *     --- ---- --------------------
     * SDA    X    X
     *     ---      --------------------
     *     主  释   从机    主机
     *     机  放   向数据  读数据线
     *         总   线写    上的数据
     *         线   数据
     * */   
    //时钟线拉低,接收器可以发送信号
    I2C_SCL_L;
    I2C_SDA_H;//先把数据线拉高,当接收器回应应答信号时,数据线会拉低
    delay_us();
    SET_SDA_IN;//设置数据线为输入
    delay_us();//等待从机响应
    delay_us();
    I2C_SCL_H;//用于读取数据线数据
    if(I2C_SDA_READ)//PF15得到一个高电平输入,收到非应答信号
        return 1;
    I2C_SCL_L;//时钟线拉低,让数据线处于占用状态
    return 0;
    
} 
/*
 * 函数名: iic_ack
 * 函数功能: 主机作为接收器时,给发送器发送应答信号
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_ack(void)
{
    /*            --------
     * SCL       /        \
     *    -------          ------
     *    ---
     * SDA   X 
     *    --- -------------
     * */
    //保证数据线是输出
    SET_SDA_OUT;
    I2C_SCL_L;//拉低时钟线
    delay_us();
    I2C_SDA_L;//数据线拉低,表示应答信号
    delay_us();
    I2C_SCL_H;//时钟线拉高,等待发送器读取应答信号
    delay_us();//让从机读取我们当前的回应
    delay_us();
    I2C_SCL_L;//数据线处于占用状态,发送器发送下一次数据

}
/*
 * 函数名: iic_nack
 * 函数功能: 主机作为接收器时,给发送器发送非应答信号
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_nack(void)
{
    /*            --------
     * SCL       /        \
     *    -------          ------
     *    --- ---------------
     * SDA   X 
     *    --- 
     * */   
    //保证数据线是输出
    SET_SDA_OUT;
    I2C_SCL_L;//拉低时钟线
    delay_us();
    I2C_SDA_H;//数据线拉高,表示非应答信号
    delay_us();
    I2C_SCL_H;//时钟线拉高,等待发送器读取应答信号
    delay_us();
    delay_us();
    I2C_SCL_L;//数据线处于占用状态,发送器发送下一次数据
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/552513.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】Linux信号

目录 信号的概念 生活中的信号 Linux中的信号 kill命令 kill 命令的使用 常见的信号 命令行代码示例 注意事项 信号的处理方式 产生信号 信号的捕捉 信号捕捉示意图 内核如何实现信号捕捉 信号的捕捉与处理 小结 阻塞信号 信号在内核中的表示图 信号集操作函数…

如何学习嵌入式Linux?

如何去学习嵌入式 Linux 呢&#xff1f;嵌入式底层开发毫无疑问是一项极为关键重要的技术&#xff0c;其被广泛地应用于形形色色的嵌入式系统之中。伴随科技的迅猛飞速发展&#xff0c;嵌入式系统已然成为了我们生活中不可或缺的一个组成部分&#xff0c;这也极为凸显出了嵌入式…

基于 Bazel 的 iOS Monorepo 工程实践

在之前很长一段时间里&#xff0c;哔哩哔哩 iOS 工程是使用 Polyrepo&#xff08;或者说 Multirepo&#xff0c;即多仓库&#xff09;的传统模式进行开发。但是随着业务的发展&#xff0c;我们的代码仓库的数量也随之膨胀&#xff0c;我们慢慢发现 Polyrepo 模式并不一定是适合…

DDoS攻击愈演愈烈,谈如何做好DDoS防御

DDoS攻击是目前最常见的网络攻击方式之一&#xff0c;各种规模的企业包括组织机构都在受其影响。对于未受保护的企业来讲&#xff0c;每次DDoS攻击的平均成本为20万美元。可见&#xff0c;我们显然需要开展更多的DDoS防御工作。除考虑如何规避已发生的攻击外&#xff0c;更重要…

手机副业赚钱秘籍:让你的手机变成赚钱利器

当今社会&#xff0c;智能手机已然成为我们生活不可或缺的一部分。随着技术的飞速进步&#xff0c;手机不再仅仅是通讯工具&#xff0c;而是化身为生活伴侣与工作助手。在这个信息爆炸的时代&#xff0c;我们时常会被一种焦虑感所困扰&#xff1a;如何能让手机超越消磨时光的定…

关于Git的一些基础用法

关于Git的一些基础用法 1. 前言2. 使用GitHub/gitee创建项目2.1 创建账号2.2 创建项目2.3 下载仓库到本地2.4 提交代码到远端仓库2.5 查看日志2.6 同步远端仓库和本地仓库 1. 前言 首先说一个冷知识&#xff08;好像也不是很冷&#xff09;&#xff0c;Linux和git的创始人是同…

CC254X 8051芯片手册介绍

1 8051CPU 8051是一种8位元的单芯片微控制器&#xff0c;属于MCS-51单芯片的一种&#xff0c;由英特尔(Intel)公司于1981年制造。Intel公司将MCS51的核心技术授权给了很多其它公司&#xff0c;所以有很多公司在做以8051为核心的单片机&#xff0c;如Atmel、飞利浦、深联华等公…

C++:类型转换

目录 1、C语言中的类型转换 2、C的四种类型转换 2.1 static_cast 2.2 reinterpret_cast 2.3 const_cast 2.4 dynamic_cast 3 RTTI 1、C语言中的类型转换 如果 赋值运算符左右两侧类型不同&#xff0c;或者形参与实参类型不匹配&#xff0c;或者返回值类型与 接收返回值…

TexStudio + MikTex 手动安装宏包

遇到上面这个 “宏包安装” 提示窗口后&#xff0c;设置来源为本地&#xff0c;随后在这个网址 https://mirrors.ustc.edu.cn/CTAN/systems/win32/miktex/tm/packages/ 下载所需的宏包&#xff0c;放到本地仓库里&#xff0c;即可 有三个宏包是必须要有的&#xff0c;它们是索…

上下文输入无限制,谷歌发布Infini-Transformer

去年&#xff0c;百川智能发布号称全球最长的上下文窗口大模型Baichuan2-192K&#xff0c;一次性可输入35万字&#xff0c;超越GPT-4。 今年3月&#xff0c;Kimi智能助手宣布在上下文窗口技术上突破200万字。 紧追其后&#xff0c;国内各大互联网巨头纷纷布局升级自家大模型产…

JAVA基础08- 继承,重写,super以及this

目录 继承&#xff08;extends&#xff09; 定义 说明 作用 方法的重写 定义 重写关键点 方法重写与重载的区别 练习 练习1&#xff08;方法继承与重写的简单练习&#xff09; 练习2&#xff08;方法继承与重写的进阶练习&#xff09; This的使用 定义 作用以及注…

Postman之版本信息查看

Postman之版本信息查看 一、为何需要查看版本信息&#xff1f;二、查看Postman的版本信息的步骤 一、为何需要查看版本信息&#xff1f; 不同的版本之间可能存在功能和界面的差异。 二、查看Postman的版本信息的步骤 1、打开 Postman 2、打开设置项 点击页面右上角的 “Set…

MyBatis 源码分析 - SQL 的执行过程

MyBatis 源码分析 - SQL 的执行过程 * 本文速览 本篇文章较为详细的介绍了 MyBatis 执行 SQL 的过程。该过程本身比较复杂&#xff0c;牵涉到的技术点比较多。包括但不限于 Mapper 接口代理类的生成、接口方法的解析、SQL 语句的解析、运行时参数的绑定、查询结果自动映射、延…

基于SpringBoot+Vue的二手车交易系统的设计与实现(源码+文档+包运行)

一.系统概述 如今社会上各行各业&#xff0c;都喜欢用自己行业的专属软件工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。新技术的产生&#xff0c;往往能解决一些老技术的弊端问题。因为传统二手车交易信息管理难度大&#xff0c;容错率低&…

Connection: keep-alive 简介

一、在使用fiddler抓包工具会出现如下场景 二、keep-alive 保持连接 "Connection: keep-alive" 是 HTTP 协议中的一个头部字段&#xff0c;用于指示客户端和服务器之间的连接是否保持活跃状态。 当客户端发送一个 HTTP 请求给服务器时&#xff0c;可以在请求头部中包…

阿里云4核8G云服务器价格多少钱?700元1年

阿里云4核8G云服务器价格多少钱&#xff1f;700元1年。阿里云4核8G服务器租用优惠价格700元1年&#xff0c;配置为ECS通用算力型u1实例&#xff08;ecs.u1-c1m2.xlarge&#xff09;4核8G配置、1M到3M带宽可选、ESSD Entry系统盘20G到40G可选&#xff0c;CPU采用Intel(R) Xeon(R…

储能系统--BMS电流采样详解

一、行业标准介绍 汽车电池管理系统 储能电池管理系统 二、BMS电流采样 &#xff08;1&#xff09;电流采样的作用 电流传感器一般会位于动力电池系统主正或主副回路测量整个电池包的电流&#xff0c;电流信号会送到BMS&#xff0c;给BMS做充放电控制&#xff0c;电池SOC、SO…

pip安装swig@FreeBSD

SWIG (Simplified Wrapper and Interface Generator) 是一个用于连接 C/C 代码与其他高级编程语言&#xff08;如Python、Java、C# 等&#xff09;的工具。它允许开发人员将现有的 C/C 代码封装成可以在其他语言中调用的接口&#xff0c;而无需手动编写大量的代码。 SWIG 的工…

编程入门(三)【GPT工具的使用】

读者大大们好呀&#xff01;&#xff01;!☀️☀️☀️ &#x1f525; 欢迎来到我的博客 &#x1f440;期待大大的关注哦❗️❗️❗️ &#x1f680;欢迎收看我的主页文章➡️寻至善的主页 文章目录 前言背景了解GPT工具使用技巧GPT工具在学习和工作中的应用 前言 背景了解 2…

OpenStack云平台实战

1、环境准备 主机CPU数量内存硬盘IPV4发行版controller48GB100GBens33: 192.168.110.27/24 esn34: 192.168.237.131/24CentOS 7.9compute48GB200GB、100GBens33: 192.168.110.26/24 esn34: 192.168.237.132/24CentOS 7.9 1.1 虚拟机安装部署 1.1.1 创建虚拟机 这里16或者17都…