算法练习第19天|222.完全二叉树的节点个数

222.完全二叉树的节点个数

222. 完全二叉树的节点个数 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/count-complete-tree-nodes/description/

题目描述:

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。题目数据保证输入的树是 完全二叉树

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

题目分析:

按照前文所讲的二叉树的递归遍历以及层序遍历,可以将完全二叉树看作普通二叉树处理,进行节点个数的统计。思路较为简单,代码如下:

后序递归遍历解法:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    //后序递归,第一步,确定函数参数以及返回值
    int countNodes(TreeNode* root) {      
        //递归第二步,确定递归终止条件。当递归函数指针root为空,递归终止
        if(root == nullptr) return 0;
        //递归第三步,确定单层递归逻辑:统计左右子树的节点个数,然后相加再加1
        int left = countNodes(root->left);  //左
        int right = countNodes(root->right);  //右
        int result = 1 + left + right;   //1就是后序遍历顺序的中           
        return result;
    }
};

层序遍历解法(也叫迭代法):

class Solution {
public:
    //层序遍历
    int countNodes(TreeNode* root) {      
        if(root == nullptr) return 0;
        queue<TreeNode*> que;
        que.push(root);
        int result = 0;
        while(!que.empty()) 
        {
            int size = que.size();
            for(int i = 0; i < size; i++)
            {
                TreeNode * node = que.front();
                que.pop();
                result++;
                if(node->left)  que.push(node->left);
                if(node->right)  que.push(node->right);
            }
        }
        return result;
    }
};

 完全二叉树解法:

但是上述方法都是将完全二叉树当做普通二叉树来进行题目的求解,这样就忽略了完全二叉树的性质。完全二叉树时除了最底层的节点可能不满之外,其余层均是满的,并且,最底层的节点必须是严格从左往右依次排列的,不能有跳跃(如下面的最右侧的二叉树,蓝色框内存在跳跃,所以其不是完全二叉树)。

如果完全二叉树最底层也填满了的话,这时它就也是满二叉树。节点个数为2^{n} -1 ,n为二叉树的层数。

所以完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用2^{n} -1来计算。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

关键点来了,怎么判断左右孩子是不是满二叉树?在完全二叉树中,如果递归一直向左遍历的深度等于递归一直向右遍历的深度,那说明就是满二叉树。前提是一定要在完全二叉树中。

所以,该解法的递归终止条件如下所示:

if (root == nullptr) return 0; 
// 开始根据左深度和右深度是否相同来判断该子树是不是满二叉树
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) {  // 求左子树深度
    left = left->left;
    leftDepth++;
}
while (right) { // 求右子树深度
    right = right->right;
    rightDepth++;
}
if (leftDepth == rightDepth) {
    return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,返回满足满二叉树的子树节点数量
}

递归三部曲,第三部,单层递归的逻辑:(可以看出使用后序遍历)

int leftTreeNum = countNodes(root->left);       // 左
int rightTreeNum = countNodes(root->right);     // 右
int result = leftTreeNum + rightTreeNum + 1;    // 中
return result;

 整体代码如下:

class Solution {
public:
    //递归第一步
    int countNodes(TreeNode* root) { 
        //递归第二步,确定递归终止条件     
        if(root == nullptr) return 0;
        TreeNode *left = root->left;
        TreeNode *right = root->right;
        int leftDepth=0 , rightDepth = 0;
        while(left)  //一直向左遍历,求深度
        {
            leftDepth++;
            left = left->left;
        }
        while(right) //一直向右遍历,求深度
        {
            rightDepth++;
            right = right->right;
        }

        if(leftDepth == rightDepth)  //当前的完全二叉树为满二叉树
            return (2 << leftDepth) - 1;  //2的n次方减一
        
        //递归第三步,确认单层递归逻辑
        //不然的话,就递归统计左右子树的节点数。每一级递归都会进行上面的满二叉树判断
        int left = countNodes(root->left);  //左
        int right = countNodes(root->right);  //右
        int result = left + right + 1;  //中
        return result;
    }
};

该解法与后续递归解法的不同之处就在于递归终止条件,该解法核心思想致力于逐子树判断是否为满二叉树。如果是,使用2^{n} -1计算节点数;如果不是,则进行下一层的递归countNodes。思路很巧妙。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/553577.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Python】穿越Python的迭代之旅:while,for 循环的奇妙世界

欢迎来到CILMY23的博客 本篇主题为&#xff1a; 穿越Python的迭代之旅&#xff1a;while&#xff0c;for 循环的奇妙世界 个人主页&#xff1a;CILMY23-CSDN博客 系列专栏&#xff1a;Python | C | C语言 | 数据结构与算法 感谢观看&#xff0c;支持的可以给个一键三连&…

spring的redis注解@Cacheable @Cacheput @CacheEvict的condition、unless

概述 redis的注解使用的过程中总会遇到condition和unless这两个属性&#xff0c;而且不同的注解使用注意事项不一样。本人也是错误使用之后详细查询了一下&#xff0c;作了如下的总结。 Cacheale 这个注解的使用和意义这里不多说&#xff0c;可以查看我的其他文档。这里主要说…

【C++】二维数组传参方式

最近刚开始刷剑指offer&#xff0c;刚做到第三题的时候&#xff0c;发现C二维数组的传参方式和C语言略有些不同&#xff0c;所以在这篇博客中&#xff0c;会列出C/C常见的二维数组传参方式。&#xff08;本方式和代码都是基于vs环境所编写&#xff09; 一.C语言二维数组传参方式…

18.读取指定目录下的txt文档时,调用另外一个python文件

1.题目 遍历4K_phone和4K_VR目录下的所有txt文件&#xff0c;并将它们的内容合并到一个名为4k_decoding.txt的文件中。 但是&#xff0c;假设你有一个名为another_script.py的Python文件&#xff0c;你想在合并txt文件之前执行它生成要处理的txt文档。 最后统计完原始的txt文件…

算法与数据结构要点速学——通用 DS/A 流程图

通用 DS/A 流程图 这是一个流程图&#xff0c;可以帮助您确定应该使用哪种数据结构或算法。请注意&#xff0c;此流程图非常笼统&#xff0c;因为不可能涵盖每个场景。 请注意&#xff0c;此流程图仅涵盖 LICC 中教授的方法&#xff0c;因此排除了像 Dijkstra 等更高级的算法。…

eclipse配置SVN和Maven插件

3、 安装SVN插件 使用如下方法安装 Help–Install New Software 注意&#xff1a;目前只能安装1.8.x这个版本的SVN&#xff0c;如果使用高版本的SVN&#xff0c;在安装SVN和maven整合插件的时候就会报错&#xff0c;这应该是插件的bug。 点击Add name: subclipse location…

区块链知识总结——比特币中的密码学原理

比特币中的密码学原理&#xff1a; 比特币的本质&#xff1a;crypto-currency. 比特币用到密码学中的两个功能&#xff1a; 1.哈希函数&#xff08;cryptographic hash function&#xff09; 三个重要性质&#xff1a; &#xff08;1&#xff09;抗碰撞性collison resista…

3 xgboost

目录 1 定义 1.1 模型定义 1.2 损失函数 1.3 化简损失函数 xgboost比赛以及工程利器。目前存在大量有关算法文档。 XGBoost&#xff08;eXtreme Gradient Boosting&#xff09;是一种基于决策树集成的机器学习算法&#xff0c;被广泛应用于分类、回归和排名等任务。XGBoost…

vue快速入门(三十)vue的工程化开发安装配置

步骤很详细&#xff0c;直接上教程 上一篇 新增内容 安装nodejs安装脚手架工具安装vue项目运行项目服务退出项目服务 安装nodejs 没安装的友友可以参考这位大神的博文Node.js下载安装及环境配置教程【超详细】 安装脚手架工具 打开管理员cmd 输入此命令行npm i -g vue/cli …

access多表关联提示:语法错误(操作符丢失)在查询表达式中

在access数据库中执行多表关联时提示了一个错误 select * from Patient a inner join BioMain b on a.BioIDb.BioID inner join BioResult c on b.BioIDc.BioID where len(a.PatientID)>12 and b.AddTime>#2024-04-17 05:53:23# and b.AddTime<#2024-04-17 17:53:23#…

ASP.NET基于Web Mail收发系统设计与开发

摘 要 互联网络技术的不断发展&#xff0c;电子邮件服务已经成为人们基本的信息交互手段&#xff0c;也是网络服务中最早和最基本的服务之一。传统邮件系统大多是基于C/S结构&#xff0c;如Lotus notes、Microsoft Exchange Server等&#xff0c;这些邮件系统占用相对较多的服…

【WEEK8】 【DAY3】【DAY4】总览Spring Boot【中文版】

目录 2024.4.17 Wednesday1.总览1.1.先看个速成课&#xff0c;了解大概1.2.SpringBoot入门1.2.1.什么是Spring1.2.2.Spring是如何简化Java开发的1.2.3.什么是SpringBoot 1.3.第一个Spring Boot项目1.3.1.准备工作1.3.2.创建基础项目说明1.3.2.1.使用官方选配下载 2024.4.18 Thu…

libftdi1学习笔记 5 - SPI Nor Flash

目录 1. 初始化 2. CS控制例子 3. 读ID 3.1 制造商 3.2 容量大小 3.3 设置IO类型 3.3.1 setQSPIWinbond 3.3.2 setQSPIMxic 3.3.3 setQSPIMicrochip 3.3.4 setQSPIMicron 4. 写保护 5. 等待空闲 6. 擦除扇区 7. 页编程 8. 页读 9. 写 10. 读 11. 验证 基于M…

管理能力学习笔记五:识别团队角色,因才施用

识别团队角色&#xff0c;因才施用&#xff0c;需要做到以下三点 扬长避短 管理者要学会问自己员工能把什么做好&#xff0c;而不是想方设法改造他们的短处 。 – 彼得德鲁克 人岗匹配 将合适的人放在合适的位置 人才多样化 团队需要各式各样的人才&#xff0c;才能高效配合…

【Linux】引导过程与服务控制

目录 一、Linux操作系统引导过程 1.linux开机引导过程 2.系统初始化进程 1.init进程 2.进程启动方式 二、运行级别和Systemd单元类型 1.运行级别 2.Systemd 三、启动类故障恢复 1.修复MBR扇区故障 2.修复GRUB引导故障 3.root密码忘记的修改方式 四、系统服务控制 …

初识ansible服务及ansible主机清单配置

目录 1、什么是自动化批量管理 2、自动化工具ansible架构 3、ansible服务专用术语对照表 4、设置主机清单&#xff08;inventory&#xff09; 4.1实验环境准备 4.2配置主机清单 4.2.1分组基本格式 4.2.2指定用户名&#xff0c;密码。端口 4.2.3子组 4.3查看 4.3.1看…

基于SpringBoot+Vue的服装销售商城系统(源码+文档+包运行)

一.系统概述 顺应互联网发展的时代热潮&#xff0c;着力于服装电商&#xff0c;满足消费者的日常需求的同时解决传统服装销售的难题。商家如果还用之前的只有线下卖衣服&#xff0c;已经很落伍了&#xff0c;这样会导致了效率低下。而且&#xff0c;时间一长的话&#xff0c;积…

AIGC算法2:LLM的复读机问题

1. 什么是LLM的复读机问题 字符级别重复&#xff0c;指大模型针对一个字或一个词重复不断的生成例如在电商翻译场景上&#xff0c;会出现“steckdose steckdose steckdose steckdose steckdose steckdose steckdose steckdose…”&#xff1b;语句级别重复&#xff0c;大模型针…

不容错过的 IntelliJ IDEA 插件 Top 10

虽然 IntelliJ IDEA 功能齐全&#xff0c;您仍然可以增添一些个性化的设置。 JetBrains Marketplace 上有着大量实用插件&#xff0c;可以满足您个人或企业的特定需求。 内容库非常庞大&#xff0c;可能会让人眼花缭乱。 在这篇博文中&#xff0c;我们将分享最近和一直以来最受…

(十四)C++自制植物大战僵尸游戏windows平台视频播放实现

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/8UFMs VLC库 在Cocos2d-x游戏开发框架中&#xff0c;没有实现windows平台视频播放的功能&#xff0c;需要自定义实现。在本项目中使用vlc库实现windows平台的视频播放功能。 vlc官网&#xff1a;网址 下载完成后&#x…
最新文章