Dropout Feature Ranking for Deep Learning Models

摘要

深度神经网络( deep neural networks,DNNs )在多个领域取得了最新的研究成果。不幸的是,DNNs因其不可解释性而臭名昭著,从而限制了其在生物和医疗保健等假说驱动领域的适用性。此外,在资源受限的环境下,设计依赖更少信息特征的测试是至关重要的,这将在合理的预算范围内实现高精度的性能。我们旨在通过提出一种新的面向深度学习的通用特征排序方法来弥合这一差距。我们展示了我们的简单而有效的方法在静态和时间序列场景中,在从分类到回归的任务中,在两个模拟和5个非常不同的数据集上,与8个“草人”、经典和深度学习的特征排序方法进行了比较。我们还说明了我们的方法在药物反应数据集上的使用,并表明它识别了与药物反应性相关的基因。

简介

深度神经网络( Deep Neural Networks,DNNs )已经开始在生物学和医疗保健领域崭露头角,包括基因组学( Xiong et al . , 2015)、医学影像( Esteva et al , 2017)、EEG ( Rajpurkar et al , 2017)和EHR ( Futoma et al , 2017)。然而,DNNs是黑盒模型,因其不可解释性而臭名昭著。在生物学和医疗保健领域,为了推导出可以通过实验验证的假设,提供关于哪些生物学或临床特征驱动预测的信息是至关重要的。所需的数据收集可能非常昂贵,因此,在合理的预算范围内生成收集最有效数据的实验设计也很重要。因此,对de进行特征排序有很强的需求。我们旨在通过提出一种新的面向深度学习的通用特征排序方法来弥合这一鸿沟。
在这项工作中,我们提出了通过变分dropout ( Gal et al , 2017)对特征进行排序。Dropout是一种常用于正则化神经网络的有效技术,通过随机移除隐藏节点值的子集并将其设置为0。在这项工作中,我们在输入特征层上使用Dropout概念,并优化相应的特征级Dropout率。由于每个特征都是随机移除的,因此我们的方法产生了类似于特征装袋( Ho , 1995)的效果,并且能够比其他非装袋方法(如LASSO )更好地对相关特征进行排序。我们将我们的方法与随机森林( RF ),LASSO,ElasticNet,Marginal排序和几种导出重要性的技术在DNN中,如深度特征选择和各种启发式进行了比较。我们首先在2个仿真数据集上进行了测试,表明我们的方法能够在非线性特征交互中,特别是在重要特征之间,对特征进行正确的排序。然后我们在4个真实世界的数据集上进行了测试,并表明我们的方法在深度神经网络中相同的特征数量下具有更高的性能。然后我们在多变量临床时间序列数据集上进行了测试,并表明我们的方法在循环神经网络设置中也能与其他方法竞争或优于其他方法。最后,我们使用先前提出的变分自编码器( Variational Autoencoder,VAE ) ( Kingma和韦林, 2013)在真实世界的药物反应预测问题上测试了我们的方法。

最近工作

许多先前提出的解释DNNs的方法集中于解释一个决策(例如在图像中指定一个特定的分类标签) (针对手边的一个具体例子( e.g . (西蒙尼扬et al , 2013 ; Zeiler and Fergus , 2014 ;里韦罗et al , 2016 ; Zhou et al , 2016 ; Selvaraju et al , 2016 ; Shrikumar et al , 2017 ; Zintgraf et al , 2017 ; Fong and韦达尔迪, 2017 ; Dabkowski and Gal , 2017 ) ) )。在这种情况下,一种方法的目的是确定给定图像的哪些部分使分类器认为该特定图像应该被分类为狗。不幸的是,这些方法不容易用于特征选择或排序的目的,其中特征的重要性应该在整个数据集中收集。
一些工作提到了使用变分dropout来实现更好的性能( Gal et al , 2017) Kingma et al ( 2015 ),对dropout进行贝叶斯解释( Maeda , 2014),或者压缩模型架构(莫尔恰诺夫等, 2017)。这些工作侧重于调整辍学率以自动获得最佳性能,但没有考虑将其应用于特征排序问题。
Li等人( 2016 )提出了深度特征选择( Deep Feature Selection,Deep FS )。Deep FS在网络中添加了另一个隐藏层,每个输入节点有一个连接到这个隐藏层(与输入大小相同),并在这个层上使用一个1惩罚。这些层之间的权重被初始化为1,但由于它们不受[ 0、1 ]的限制,它们可以成为大的正值和负值。因此,这个附加层可以放大特定的输入,并且需要在原有的网络架构内进行平衡。此外,使用' 1惩罚可以防止Deep FS选择相关特征,这在许多生物和健康应用中非常重要。
最后,几部著作还针对临床环境下的口译特点进行了分析。Che等人( 2015 )使用梯度提升树( Gradient-Boosted Trees )在医疗数据集上模拟循环神经网络以达到可比的性能。Nezhad等人( 2016 )通过自动编码器和随机森林来解释临床特征。Suresh等人( 2017 )使用循环神经网络来预测临床数据集,并在我们的设置中使用名为" Mean "的排序启发式。这些方法依赖于额外的决策树结构来学习特征,或者使用在我们的实验中排名性能较弱的启发式。

方法

3.1 Variational dropout

Dropout (斯里瓦斯塔瓦等, 2014)是神经网络最有效、应用最广泛的正则化技术之一。其机制是为神经网络中的每个隐藏单元注入一个乘性伯努利噪声。具体来说,在前向传递过程中,对于第j层的每个隐藏单元k,采样一个dropout掩码zjk⋅Bern ( z | θjk )。然后将原始隐藏节点值hjk乘以该掩码h′jk = hjkzjk,该掩码将隐藏节点值随机设置为hjk或0。
变异Dropout ( Maeda , 2014)将Dropout rate θ作为一个参数进行优化,而不是将其作为一个固定的超参数。对于一个神经网络f ( x ),给定一个大小为M的小批量(从训练集中抽取N个样本)和一个dropout掩码z,对dropout进行变分解释后得到的损失目标函数可以写为:
在这里插入图片描述
这里,zi┐qθ ( z ),其中q θ ( z )是变分掩码分布,p ( z )是先验分布.

3.2 使用Variational dropout进行特征排序

图1显示了我们的方法。为了分析哪些特征对于给定的预训练模型M正确预测其目标变量y是重要的,我们引入了Dropout Feature Ranking ( Dropout FR )方法。在我们的方法中,我们在M的输入层中加入了变分dropout正则化。为了达到最小的损失,Dropout FR模型应该学习小的dropout率,对于被分析模型M正确的目标预测很重要的特征,而对于其他不重要的特征,则增加dropout率。具体来说,给定D个特征,我们设定一个变量掩码分布q θ ( z ) =∏Dj = 1q ( zj | θj ) =∏Dj = 1Bern ( zj | θj )
为完全因式分解分布。这给了我们一个基于特征的辍学率θ j,其大小表示特征j的重要性。我们不在式( 1 )中使用KL ( qθ ( z ) | | p ( z ) )对dropout分布q θ ( z )进行正则化,而是直接对现有特征数量(特征不丢失)进行惩罚。这样就避免了事先设定辍学率p ( z )的需要,与线性回归(墨菲, 2012)的’ 0惩罚对齐。因此,我们的损失函数可以写为:
在这里插入图片描述
图1:Dropout特征排序图。训练前( Left ),每个特征的退学率初始化为0.5。经过训练( Right )后,每个特征得到不同的丢弃率。然后,我们根据辍学率的大小对所有特征进行排序- -幅度越低,排序越高。

我们不在式( 1 )中使用KL ( qθ ( z ) | | p ( z ) )对dropout分布q θ ( z )进行正则化,而是直接对现有特征数量(特征不丢失)进行惩罚。这就避免了事先设定辍学率p ( z )的需要,与线性回归(墨菲, 2012)的’ 0惩罚对齐。因此,我们的损失函数可以写为:
在这里插入图片描述
式中:zi⋅qθ ( z )
,λ由交叉验证确定。
具体松弛为了优化L ( θ )关于参数θ,我们需要通过离散变量z向后传播。我们采用与Gal et al . ( 2017 )相同的方法来优化我们的辍学率。具体来说,我们不是对离散的伯努利变量进行采样,而是对混凝土分布( Jang et al . , 2016 ;麦迪森等, 2016)进行温度t的采样,t的值在0到1之间。该分布将大部分质量置于0和1中,以近似离散分布。伯努利分布Bern ( z | θ )的具体松弛" z "为:
在这里插入图片描述
式中:u⋅Uniform( 0、1 )。我们将t固定为0.1,发现它在我们的所有实验中都是有效的。与传统的REINFORCE估计器(威廉姆斯, 1992)相比,这种具体的分布具有更低的方差和更好的性能(数据未显示),因此我们在所有的实验中都应用了它。
退火我们采用了退火技巧,以避免模型在完全优化之前被惩罚过重。具体来说,在优化过程中,我们在最初的几个阶段将λ从0线性地增加到指定的值。这与VAE中的KL退火技巧( Bowman et al , 2015)类似。
与强化学习的关系我们的方法可以看作是一种基于策略梯度的方法( Sutton et al , 2000) (强化学习技术之一),应用于特征选择设置。从这个角度来看,我们的策略是因式分解的伯努利分布,奖励由目标的对数概率和使用特征的数量组成。我们优化了使用 2P 组合在这个大型特征空间中输出最佳特征组合的策略,其中 P 是特征总数。为了获得特征方面的解释,我们采用因式分解伯努利分布来获得每个特征的重要性值作为我们的排名。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/569029.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

沐风老师3dMax万有引力插件ToGround使用方法详解

3dMax万有引力插件ToGround使用教程 3dMax万有引力插件ToGround,用于在复杂地形(曲面)上将对象放置在适当高度的实用工具。例如:将大量的人、植物和汽车快速放置在一个街道、公园和小跑道高度不同的区域尤其有用。 【适用版本】 …

android openGL ES详解

1、渲染线程与主线程的通信 两个线程之间的通信可以用如下方法: 在主线程中的 GLSurfaceView 实例可以调用 queueEvent( )方法传递一个 Runnable 给后台渲染线程,渲染线程可以调用 Activity 的 runOnUIThread()来传递事件 (event) 给主线程。 2、顶点…

SQLite FTS3 和 FTS4 扩展(三十二)

返回:SQLite—系列文章目录 上一篇:SQLite 的命令行 Shell(三十一) 下一篇:SQLite—系列文章目录 概述 FTS3 和 FTS4 是 SQLite 虚拟表模块,允许用户执行 对一组文档进行全文搜索。最常见(和最有效…

Linux之yum和vim的使用

一、yum的使用 yum 后面跟install要安装的文件名: 若你要安装的文件已经存在,则会出现: 要删除文件: yum remore文件名即可删除 在我们安装完lrzsz之后,可以用rz指令和sz指令: rz指令可以从window窗口中…

开源模型应用落地-chatglm3-6b-集成langchain(十)

一、前言 langchain框架调用本地模型,使得用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。通过LangChain和chatglm3-6b模型的整合,可以更好地处理对话,提供更智能、更准确的响应,从而提高对话系统的性能…

LoggerFactory is not a Logback

错误信息 LoggerFactory is not a Logback LoggerContext but Logback is on the classpath. Either remove Logback or the competing implementation (class org.slf4j.impl.SimpleLoggerFactory loaded from file:/D:/maven/repository/org/slf4j/slf4j-simple/1.7.26/slf…

easyx库的学习(鼠标信息)

前言 本次博客是作为介绍easyx库的使用,最好是直接代码打到底,然后看效果即可 代码 int main() {initgraph(640, 480, EX_SHOWCONSOLE|EX_DBLCLKS);setbkcolor(RGB(231, 114, 227));cleardevice();//定义消息结构体ExMessage msg { 0 };//获取消息wh…

SpringBoot+Vue开发记录(三)

说明:本篇文章的主要内容为需求分析。需求分析这一部分很重要,也稍微有点子难搞,所以本篇文章里的有些内容会有失偏颇。 一、准备步骤 我打算做一个刷题项目,但是具体这个项目该怎么做,我是一头雾水。 所以就要先进行…

OPTEE的FTRACE跟踪技术实战

【按语】:对于排除性能问题或优化代码来说,有没有更好的工具可以使用?FTRACE记录了对函数的所有调用,并包含计时信息。因此,对于排除性能问题或优化代码来说,它是一个很有价值的工具。本博客描述如何使用FTRACE为TA生成函数调用图。相关知识点介绍,请参考OPTEE Ftrace函…

k8s calico vxlan式详解

之前的文章讲了k8s ipip模式的使用以及流量路径,本篇文章主要是来讲解一下vxlan 模式下pod 流量是如何通信的。 一、ipip模式转vxlan 修改calico backend参数 将calico_backend参数由bird设置为vxlan,因为vxlan部署不使用bgp 修改calico controllers的configmap…

第100+6步 ChatGPT文献复现:ARIMAX预测新冠

基于WIN10的64位系统演示 一、写在前面 我们继续来解读ARIMAX模型文章,这一轮带来的是: 《PLoS One》杂志的2022年一篇题目为《A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorologic…

树莓派驱动开发----iic驱动oled屏幕篇

水一期吧,上效果 有点模糊,我直接说吧,修改设备树,iic1,地址0x3c,然后编写驱动文件,app文件,挂载驱动模块后在终端输入 /*******************************************************…

Appium一本通

Appium介绍 概念:Appium是一个移动App(手机应用)自动化工具。 用途:重复性任务、爬虫、自动化测试。 特点:开源免费、多平台支持(ios\android)、多类型支持(native\webview)、类selenium支持多语言(java\python\js\ruby) Appium原理 三个主…

基于小程序实现的查寝打卡系统

作者主页:Java码库 主营内容:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】:Java 【框架】:ssm 【…

k-均值聚类

K均值聚类(K-means clustering)是一种常用的无监督学习方法,用于将一组数据点划分为K个簇(cluster)。 它的目标是将相似的数据点归到同一个簇中,同时使得不同簇之间的数据点尽可能不相似。K均值聚类算法的…

学习笔记记录ensp中防火墙配置(trust,unstrus,dmz 资源下载可用)

实验目的,通过配置防火墙控制相互之间的访问,拓扑图如下 资源已上传,注意lsw1和ar2的路由表到各个网段的路由表配置,通过防火墙来控制各个区域能否访问成功。 防火墙通过cloud2链接,方便登录网页配置防火墙策略。防火…

分享基于鸿蒙OpenHarmony的Unity团结引擎应用开发赛

该赛题旨在鼓励更多开发者基于OpenHarmony4.x版本,使用团结引擎创造出精彩的游戏与应用。本次大赛分为“创新游戏”与“创新3D 化应用”两大赛道,每赛道又分“大众组”与“高校组”,让不同背景的开发者同台竞技。无论你是游戏开发者&#xff…

操作系统—系统调用(实验)

文章目录 系统调用1.实验目标2.实验过程记录(1).理解系统调用接口(2).阅读argraw、argint、argaddr和argstr(3).理解系统调用的解耦合实现方式(4).wait系统调用的非阻塞选项实现(5).yield系统调用的实现 3.存在的问题及解决方案实验小结 系统调用 1.实验目标 阅读并了解xv6内核…

基于Python+Selenium+Pytest的Dockerfile如何写

使用 Dockerfile 部署 Python 应用程序与 Selenium 测试 在本文中,我们将介绍如何使用 Dockerfile 部署一个 Python 应用程序,同时利用 Selenium 进行自动化测试。我们将使用官方的 Python 运行时作为父镜像,并在其中安装所需的依赖项和工具…

Error creating bean with name ‘ribbonLoadBalancingHttpClient‘~

场景 利用Ribbon来实现负载均衡 报错提示 Caused by: org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name ribbonLoadBalancer defined in org.springframework.cloud.netflix.ribbon.RibbonClientConfiguration: Unsatisfi…
最新文章