STM32标准库ADC和DMA知识点总结

目录

前言

一、ADC模数转换器

(1)AD单通道

(2)AD多通道

二、DMA原理和应用

(1)DMA数据转运(内存到内存)

(2)DMA+AD多同道(外设到内存)


前言

最近想重温一下32标准库的内容,所以打算写几篇博客梳理一遍之前学过的知识点,图片和代码都是参考江科大的,江科大32教程非常不错,不管是小白还是大佬想学习32标准库都可以看他b站的课程。

一、ADC模数转换器

ADC简介:

逐次逼近型ADC:

ADC框图:

ADC基本结构:

输入通道:

通道

ADC1

ADC2

ADC3

通道0

PA0

PA0

PA0

通道1

PA1

PA1

PA1

通道2

PA2

PA2

PA2

通道3

PA3

PA3

PA3

通道4

PA4

PA4

PF6

通道5

PA5

PA5

PF7

通道6

PA6

PA6

PF8

通道7

PA7

PA7

PF9

通道8

PB0

PB0

PF10

通道9

PB1

PB1

通道10

PC0

PC0

PC0

通道11

PC1

PC1

PC1

通道12

PC2

PC2

PC2

通道13

PC3

PC3

PC3

通道14

PC4

PC4

通道15

PC5

PC5

通道16

温度传感器

通道17

内部参考电压

单次转换,非扫描模式:

连续转换,非扫描模式:

单次转换,扫描模式:

连续转换,扫描模式:

触发控制:

数据对齐:

转换时间:

校准:

硬件电路:

(1)AD单通道

面包板接线图:

代码示例:

AD.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:AD初始化
  * 参    数:无
  * 返 回 值:无
  */
void AD_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*设置ADC时钟*/
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0引脚初始化为模拟输入
	
	/*规则组通道配置*/
	ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);		//规则组序列1的位置,配置为通道0
	
	/*ADC初始化*/
	ADC_InitTypeDef ADC_InitStructure;						//定义结构体变量
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;		//模式,选择独立模式,即单独使用ADC1
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//数据对齐,选择右对齐
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//外部触发,使用软件触发,不需要外部触发
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;		//连续转换,失能,每转换一次规则组序列后停止
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;			//扫描模式,失能,只转换规则组的序列1这一个位置
	ADC_InitStructure.ADC_NbrOfChannel = 1;					//通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1
	ADC_Init(ADC1, &ADC_InitStructure);						//将结构体变量交给ADC_Init,配置ADC1
	
	/*ADC使能*/
	ADC_Cmd(ADC1, ENABLE);									//使能ADC1,ADC开始运行
	
	/*ADC校准*/
	ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准
	while (ADC_GetResetCalibrationStatus(ADC1) == SET);
	ADC_StartCalibration(ADC1);
	while (ADC_GetCalibrationStatus(ADC1) == SET);
}

/**
  * 函    数:获取AD转换的值
  * 参    数:无
  * 返 回 值:AD转换的值,范围:0~4095
  */
uint16_t AD_GetValue(void)
{
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);					//软件触发AD转换一次
	while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);	//等待EOC标志位,即等待AD转换结束
	return ADC_GetConversionValue(ADC1);					//读数据寄存器,得到AD转换的结果
}

AD.h

#ifndef __AD_H
#define __AD_H

void AD_Init(void);
uint16_t AD_GetValue(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"

uint16_t ADValue;			//定义AD值变量
float Voltage;				//定义电压变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();			//OLED初始化
	AD_Init();				//AD初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "ADValue:");
	OLED_ShowString(2, 1, "Voltage:0.00V");
	
	while (1)
	{
		ADValue = AD_GetValue();					//获取AD转换的值
		Voltage = (float)ADValue / 4095 * 3.3;		//将AD值线性变换到0~3.3的范围,表示电压
		
		OLED_ShowNum(1, 9, ADValue, 4);				//显示AD值
		OLED_ShowNum(2, 9, Voltage, 1);				//显示电压值的整数部分
		OLED_ShowNum(2, 11, (uint16_t)(Voltage * 100) % 100, 2);	//显示电压值的小数部分
		
		Delay_ms(100);			//延时100ms,手动增加一些转换的间隔时间
	}
}

(2)AD多通道

面包板接线:

代码示例:

AD.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:AD初始化
  * 参    数:无
  * 返 回 值:无
  */
void AD_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*设置ADC时钟*/
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0、PA1、PA2和PA3引脚初始化为模拟输入
	
	/*不在此处配置规则组序列,而是在每次AD转换前配置,这样可以灵活更改AD转换的通道*/
	
	/*ADC初始化*/
	ADC_InitTypeDef ADC_InitStructure;						//定义结构体变量
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;		//模式,选择独立模式,即单独使用ADC1
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;	//数据对齐,选择右对齐
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;	//外部触发,使用软件触发,不需要外部触发
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;		//连续转换,失能,每转换一次规则组序列后停止
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;			//扫描模式,失能,只转换规则组的序列1这一个位置
	ADC_InitStructure.ADC_NbrOfChannel = 1;					//通道数,为1,仅在扫描模式下,才需要指定大于1的数,在非扫描模式下,只能是1
	ADC_Init(ADC1, &ADC_InitStructure);						//将结构体变量交给ADC_Init,配置ADC1
	
	/*ADC使能*/
	ADC_Cmd(ADC1, ENABLE);									//使能ADC1,ADC开始运行
	
	/*ADC校准*/
	ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准
	while (ADC_GetResetCalibrationStatus(ADC1) == SET);
	ADC_StartCalibration(ADC1);
	while (ADC_GetCalibrationStatus(ADC1) == SET);
}

/**
  * 函    数:获取AD转换的值
  * 参    数:ADC_Channel 指定AD转换的通道,范围:ADC_Channel_x,其中x可以是0/1/2/3
  * 返 回 值:AD转换的值,范围:0~4095
  */
uint16_t AD_GetValue(uint8_t ADC_Channel)
{
	ADC_RegularChannelConfig(ADC1, ADC_Channel, 1, ADC_SampleTime_55Cycles5);	//在每次转换前,根据函数形参灵活更改规则组的通道1
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);					//软件触发AD转换一次
	while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);	//等待EOC标志位,即等待AD转换结束
	return ADC_GetConversionValue(ADC1);					//读数据寄存器,得到AD转换的结果
}

AD.h

#ifndef __AD_H
#define __AD_H

void AD_Init(void);
uint16_t AD_GetValue(uint8_t ADC_Channel);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"

uint16_t AD0, AD1, AD2, AD3;	//定义AD值变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	AD_Init();					//AD初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "AD0:");
	OLED_ShowString(2, 1, "AD1:");
	OLED_ShowString(3, 1, "AD2:");
	OLED_ShowString(4, 1, "AD3:");
	
	while (1)
	{
		AD0 = AD_GetValue(ADC_Channel_0);		//单次启动ADC,转换通道0
		AD1 = AD_GetValue(ADC_Channel_1);		//单次启动ADC,转换通道1
		AD2 = AD_GetValue(ADC_Channel_2);		//单次启动ADC,转换通道2
		AD3 = AD_GetValue(ADC_Channel_3);		//单次启动ADC,转换通道3
		
		OLED_ShowNum(1, 5, AD0, 4);				//显示通道0的转换结果AD0
		OLED_ShowNum(2, 5, AD1, 4);				//显示通道1的转换结果AD1
		OLED_ShowNum(3, 5, AD2, 4);				//显示通道2的转换结果AD2
		OLED_ShowNum(4, 5, AD3, 4);				//显示通道3的转换结果AD3
		
		Delay_ms(100);			//延时100ms,手动增加一些转换的间隔时间
	}
}

 HAL库实验可看:STM32 ADC介绍和应用_mq-4 adc-CSDN博客

二、DMA原理和应用

DMA简介:

存储器映像:

RAM:随机存取存储器(英语:Random Access Memory,缩写:RAM),也叫主存,是与CPU直接交换数据的内部存储器。

ROM:(只读内存(Read-Only Memory)简称)英文简称ROM。ROM所存数据,一般是装入整机前事先写好的,整机工作过程中只能读出,而不像随机存储器那样能快速地、方便地加以改写。

DMA框图:

DMA基本结构:

DMA请求:

数据宽度与对齐:简单来说就是高位补零或者取高位舍低位

数据转运+DMA:

ADC扫描模式+DMA:

(1)DMA数据转运(内存到内存)

DMA.c

#include "stm32f10x.h"                  // Device header

uint16_t MyDMA_Size;					//定义全局变量,用于记住Init函数的Size,供Transfer函数使用

/**
  * 函    数:DMA初始化
  * 参    数:AddrA 原数组的首地址
  * 参    数:AddrB 目的数组的首地址
  * 参    数:Size 转运的数据大小(转运次数)
  * 返 回 值:无
  */
void MyDMA_Init(uint32_t AddrA, uint32_t AddrB, uint16_t Size)
{
	MyDMA_Size = Size;					//将Size写入到全局变量,记住参数Size
	
	/*开启时钟*/
	RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);						//开启DMA的时钟
	
	/*DMA初始化*/
	DMA_InitTypeDef DMA_InitStructure;										//定义结构体变量
	DMA_InitStructure.DMA_PeripheralBaseAddr = AddrA;						//外设基地址,给定形参AddrA
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;	//外设数据宽度,选择字节
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable;			//外设地址自增,选择使能
	DMA_InitStructure.DMA_MemoryBaseAddr = AddrB;							//存储器基地址,给定形参AddrB
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;			//存储器数据宽度,选择字节
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;					//存储器地址自增,选择使能
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;						//数据传输方向,选择由外设到存储器
	DMA_InitStructure.DMA_BufferSize = Size;								//转运的数据大小(转运次数)
	DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;							//模式,选择正常模式
	DMA_InitStructure.DMA_M2M = DMA_M2M_Enable;								//存储器到存储器,选择使能
	DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;					//优先级,选择中等
	DMA_Init(DMA1_Channel1, &DMA_InitStructure);							//将结构体变量交给DMA_Init,配置DMA1的通道1
	
	/*DMA使能*/
	DMA_Cmd(DMA1_Channel1, DISABLE);	//这里先不给使能,初始化后不会立刻工作,等后续调用Transfer后,再开始
}

/**
  * 函    数:启动DMA数据转运
  * 参    数:无
  * 返 回 值:无
  */
void MyDMA_Transfer(void)
{
	DMA_Cmd(DMA1_Channel1, DISABLE);					//DMA失能,在写入传输计数器之前,需要DMA暂停工作
	DMA_SetCurrDataCounter(DMA1_Channel1, MyDMA_Size);	//写入传输计数器,指定将要转运的次数
	DMA_Cmd(DMA1_Channel1, ENABLE);						//DMA使能,开始工作
	
	while (DMA_GetFlagStatus(DMA1_FLAG_TC1) == RESET);	//等待DMA工作完成
	DMA_ClearFlag(DMA1_FLAG_TC1);						//清除工作完成标志位
}

DMA.h

#ifndef __MYDMA_H
#define __MYDMA_H

void MyDMA_Init(uint32_t AddrA, uint32_t AddrB, uint16_t Size);
void MyDMA_Transfer(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyDMA.h"

uint8_t DataA[] = {0x01, 0x02, 0x03, 0x04};				//定义测试数组DataA,为数据源
uint8_t DataB[] = {0, 0, 0, 0};							//定义测试数组DataB,为数据目的地

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	
	MyDMA_Init((uint32_t)DataA, (uint32_t)DataB, 4);	//DMA初始化,把源数组和目的数组的地址传入
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "DataA");
	OLED_ShowString(3, 1, "DataB");
	
	/*显示数组的首地址*/
	OLED_ShowHexNum(1, 8, (uint32_t)DataA, 8);
	OLED_ShowHexNum(3, 8, (uint32_t)DataB, 8);
		
	while (1)
	{
		DataA[0] ++;		//变换测试数据
		DataA[1] ++;
		DataA[2] ++;
		DataA[3] ++;
		
		OLED_ShowHexNum(2, 1, DataA[0], 2);		//显示数组DataA
		OLED_ShowHexNum(2, 4, DataA[1], 2);
		OLED_ShowHexNum(2, 7, DataA[2], 2);
		OLED_ShowHexNum(2, 10, DataA[3], 2);
		OLED_ShowHexNum(4, 1, DataB[0], 2);		//显示数组DataB
		OLED_ShowHexNum(4, 4, DataB[1], 2);
		OLED_ShowHexNum(4, 7, DataB[2], 2);
		OLED_ShowHexNum(4, 10, DataB[3], 2);
		
		Delay_ms(1000);		//延时1s,观察转运前的现象
		
		MyDMA_Transfer();	//使用DMA转运数组,从DataA转运到DataB
		
		OLED_ShowHexNum(2, 1, DataA[0], 2);		//显示数组DataA
		OLED_ShowHexNum(2, 4, DataA[1], 2);
		OLED_ShowHexNum(2, 7, DataA[2], 2);
		OLED_ShowHexNum(2, 10, DataA[3], 2);
		OLED_ShowHexNum(4, 1, DataB[0], 2);		//显示数组DataB
		OLED_ShowHexNum(4, 4, DataB[1], 2);
		OLED_ShowHexNum(4, 7, DataB[2], 2);
		OLED_ShowHexNum(4, 10, DataB[3], 2);

		Delay_ms(1000);		//延时1s,观察转运后的现象
	}
}

(2)DMA+AD多同道(外设到内存)

面包板接线:

代码示例:

AD_DMA.c

#include "stm32f10x.h"                  // Device header

uint16_t AD_Value[4];					//定义用于存放AD转换结果的全局数组

/**
  * 函    数:AD初始化
  * 参    数:无
  * 返 回 值:无
  */
void AD_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);	//开启ADC1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);		//开启DMA1的时钟
	
	/*设置ADC时钟*/
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);						//选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA0、PA1、PA2和PA3引脚初始化为模拟输入
	
	/*规则组通道配置*/
	ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);	//规则组序列1的位置,配置为通道0
	ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5);	//规则组序列2的位置,配置为通道1
	ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5);	//规则组序列3的位置,配置为通道2
	ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_55Cycles5);	//规则组序列4的位置,配置为通道3
	
	/*ADC初始化*/
	ADC_InitTypeDef ADC_InitStructure;											//定义结构体变量
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;							//模式,选择独立模式,即单独使用ADC1
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;						//数据对齐,选择右对齐
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;			//外部触发,使用软件触发,不需要外部触发
	ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;							//连续转换,使能,每转换一次规则组序列后立刻开始下一次转换
	ADC_InitStructure.ADC_ScanConvMode = ENABLE;								//扫描模式,使能,扫描规则组的序列,扫描数量由ADC_NbrOfChannel确定
	ADC_InitStructure.ADC_NbrOfChannel = 4;										//通道数,为4,扫描规则组的前4个通道
	ADC_Init(ADC1, &ADC_InitStructure);											//将结构体变量交给ADC_Init,配置ADC1
	
	/*DMA初始化*/
	DMA_InitTypeDef DMA_InitStructure;											//定义结构体变量
	DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;				//外设基地址,给定形参AddrA
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;	//外设数据宽度,选择半字,对应16为的ADC数据寄存器
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;			//外设地址自增,选择失能,始终以ADC数据寄存器为源
	DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)AD_Value;					//存储器基地址,给定存放AD转换结果的全局数组AD_Value
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;			//存储器数据宽度,选择半字,与源数据宽度对应
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;						//存储器地址自增,选择使能,每次转运后,数组移到下一个位置
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;							//数据传输方向,选择由外设到存储器,ADC数据寄存器转到数组
	DMA_InitStructure.DMA_BufferSize = 4;										//转运的数据大小(转运次数),与ADC通道数一致
	DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;								//模式,选择循环模式,与ADC的连续转换一致
	DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;								//存储器到存储器,选择失能,数据由ADC外设触发转运到存储器
	DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;						//优先级,选择中等
	DMA_Init(DMA1_Channel1, &DMA_InitStructure);								//将结构体变量交给DMA_Init,配置DMA1的通道1
	
	/*DMA和ADC使能*/
	DMA_Cmd(DMA1_Channel1, ENABLE);							//DMA1的通道1使能
	ADC_DMACmd(ADC1, ENABLE);								//ADC1触发DMA1的信号使能
	ADC_Cmd(ADC1, ENABLE);									//ADC1使能
	
	/*ADC校准*/
	ADC_ResetCalibration(ADC1);								//固定流程,内部有电路会自动执行校准
	while (ADC_GetResetCalibrationStatus(ADC1) == SET);
	ADC_StartCalibration(ADC1);
	while (ADC_GetCalibrationStatus(ADC1) == SET);
	
	/*ADC触发*/
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);	//软件触发ADC开始工作,由于ADC处于连续转换模式,故触发一次后ADC就可以一直连续不断地工作
}

AD_DMA.h

#ifndef __AD_H
#define __AD_H

extern uint16_t AD_Value[4];

void AD_Init(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	AD_Init();					//AD初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "AD0:");
	OLED_ShowString(2, 1, "AD1:");
	OLED_ShowString(3, 1, "AD2:");
	OLED_ShowString(4, 1, "AD3:");
	
	while (1)
	{
		OLED_ShowNum(1, 5, AD_Value[0], 4);		//显示转换结果第0个数据
		OLED_ShowNum(2, 5, AD_Value[1], 4);		//显示转换结果第1个数据
		OLED_ShowNum(3, 5, AD_Value[2], 4);		//显示转换结果第2个数据
		OLED_ShowNum(4, 5, AD_Value[3], 4);		//显示转换结果第3个数据
		
		Delay_ms(100);							//延时100ms,手动增加一些转换的间隔时间
	}
}

 HAL库实验可看:STM32DMA原理和应用_stm32dma应用-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/571719.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

pnpm install报错 Value of “this“ must be of type URLSearchParams

执行pnpm install的时候就报错Value of “this” must be of type URLSearchParams 由于之前执行没有出现过这个问题,最近在使用vue3所以使用了高版本的node,怀疑是node版本的问题。 解决: 检查node版本 node -v当前使用的是20.11.0的 修改…

银行业ESB架构:构建安全高效的金融信息交换平台

在金融行业,信息交换是银行业务运作的核心。为了实现不同系统之间的数据交互和业务流程的协同,银行通常采用企业服务总线(ESB)架构。本文将探讨银行业ESB架构的设计理念、关键技术以及实践经验,帮助银行构建安全高效的…

Matlab|基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理

1 主要内容 该程序复现《基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理》模型,建立运营商和多虚拟电厂的一主多从博弈模型,研究运营商动态定价行为和虚拟电厂能量管理模型,模型为双层,首先下层模型中,构建…

Golang | Leetcode Golang题解之第47题全排列II

题目: 题解: func permuteUnique(nums []int) (ans [][]int) {sort.Ints(nums)n : len(nums)perm : []int{}vis : make([]bool, n)var backtrack func(int)backtrack func(idx int) {if idx n {ans append(ans, append([]int(nil), perm...))return}…

网络安全新挑战:通用人工智能(AGI)等级保护指南

通用人工智能(AGI)的发展现状及趋势 随着2023年大语言模型应用的划时代突破,以ChatGPT为杰出代表的此类技术犹如一股洪流,彻底颠覆了人类与机器智能交互的疆界,引领通用人工智能(AGI)步入一个崭…

GAN详解,公式推导解读,详细到每一步的理论推导

在看这一篇文章之前,希望熟悉掌握熵的知识,可看我写的跟熵相关的一篇博客https://blog.csdn.net/m0_59156726/article/details/138128622 1. GAN 原始论文:https://arxiv.org/pdf/1406.2661.pdf 放一张GAN的结构,如下&#xff1…

为AI电脑生态注入强悍动力,安耐美PlatiGemini 1200W高性能电源

在DIY攒机的过程中,电源是非常重要的一环,现在高性能的硬件功耗往往很高,因此一款优秀的电源整个系统稳定运行的基石。最近,我发现一款由安耐美(Enermax)推出的PlatiGemini 1200W电源,它不仅满足…

CSS渐变色理论与分类、文字渐变色方案、炸裂渐变色方案以及主流专业渐变色工具网站推荐

渐变色彩可以增加视觉层次感和动态效果,使网页界面更加生动有趣,吸引用户注意力。另外,相较于静态背景图片,CSS渐变无需额外的HTTP请求,减轻服务器负载,加快页面加载速度;同时CSS渐变能够根据容…

Ant Design Vue + js 表格计算合计

1.需要计算的数量固定&#xff08;如表1&#xff0c;已知需要计算的金额为&#xff1a;装修履约保证金 装修垃圾清运费出入证工本费 出入证押金 这四项相加&#xff0c;可以写成固定的算法&#xff09;&#xff1a; 表格样式&#xff1a; <h4 style"margin: 0 0 8px…

TensorFlow进阶一(张量的范数、最值、均值、和函数、张量的比较)

⚠申明&#xff1a; 未经许可&#xff0c;禁止以任何形式转载&#xff0c;若要引用&#xff0c;请标注链接地址。 全文共计3077字&#xff0c;阅读大概需要3分钟 &#x1f308;更多学习内容&#xff0c; 欢迎&#x1f44f;关注&#x1f440;【文末】我的个人微信公众号&#xf…

科研工作学习中常用的录制动图软件——screenToGif

一、前言 俗话说&#xff0c;字不如表&#xff0c;表不如图&#xff0c;静图不如动图。 动图给人的直观感受&#xff0c;还是很不错的。在曾经的学生期间&#xff0c;进行组会汇报&#xff1b;还是如今工作中&#xff0c;给领导汇报。我经常使用screenToGif这款软件&#xff…

Yolov5 v7.0目标检测——详细记录环境配置、自定义数据处理、模型训练与常用错误解决方法(数据集为河道漂浮物)

1. Yolov5 YOLOv5是是YOLO系列的一个延伸&#xff0c;其网络结构共分为&#xff1a;input、backbone、neck和head四个模块&#xff0c;yolov5对yolov4网络的四个部分都进行了修改&#xff0c;并取得了较大的提升&#xff0c;在input端使用了Mosaic数据增强、自适应锚框计算、自…

stm32f103c8t6学习笔记(学习B站up江科大自化协)-UNIX时间戳

UNIX时间戳 UNIX时间戳最早是在UNIX系统使用的&#xff0c;所以叫做UNIX时间戳&#xff0c;之后很多由UNIX演变而来的系统也继承了UNIX时间戳的规定&#xff0c;目前linux&#xff0c;windows&#xff0c;安卓这些操作系统的底层计时系统都是用UNIX时间戳 时间戳这个计时系统和…

5 个有用的 Linux Shell 转义序列

目录 ⛳️推荐 前言          1、退格符 2、换行符 3、换页符 4、制表符 5、Unicode ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站 前言          如何在你的…

计算机网络-IS-IS路由计算

前面已经学习了建立IS-IS邻接关系和同步LSDB&#xff0c;然后基于此路由器会进行路由计算。 一、路由计算 因为IS-IS路由器有不同的级别&#xff0c;只维护自身级别的LSDB&#xff0c;因此就是Level-1只有区域内的路由信息&#xff0c;Level-2有Level-2的路由信息&#xff0c;L…

初始Maven

1.背景 问题引入&#xff1a;为什么要使用 Maven&#xff1f; 1.1 添加第三方 jar 包 在 JavaEE 开发领域&#xff0c;有大量的第三方框架和工具可以供我们使用。使用这些 jar 包最简单的方法就是复制粘贴到 WEB-INF 目录中的 lib 目录下。但是会导致每次创建一个新工程就需要将…

【Linux】信号的产生

目录 一. 信号的概念signal() 函数 二. 信号的产生1. 键盘发送2. 系统调用kill()raise()abort() 3. 软件条件alarm() 4. 硬件异常除零错误:野指针: 三. 核心转储 一. 信号的概念 信号是消息的载体, 标志着不同的行为; 是进程间发送异步信息的一种方式, 属于软中断. 信号随时都…

医药流通企业如何安全访问医药ERP?无需公网IP和改变现有IT架构

随着目前医药流通行业竞争的加剧&#xff0c;市场供应日趋饱和&#xff0c;传统的粗放式管理缺陷逐渐暴露&#xff0c;导致从事医药行业企业的利润不同程度的下滑&#xff0c;想要满足医药行业客户的个性化需求&#xff0c;为适应企业未来发展&#xff0c;医药流通行业越来越多…

Docker 安装 Mongo

创建宿主机目录 在你的宿主机上创建必要的目录来存储 MongoDB 的数据和配置文件。这样做可以保证即使容器被删除&#xff0c;数据也能得到保留。 mkdir -p /develop/mongo/data mkdir -p /develop/mongo/config创建 MongoDB 配置文件 创建一个名为 mongod.conf 的 MongoDB 配…

C语言中整型与浮点型在内存中的存储

今天让我们来看看整型的数据和浮点型的数据在内存中是怎么存储的呢 整型数据在内存中的存储 整型数据在内存中存储的是二进制的补码 正数的话也没什么可说的&#xff0c;原码反码补码都相同 我们来看看负数&#xff1a; 以-5为例 原码&#xff1a;10000000 00000000 00000000 0…
最新文章