【Cortex-M3 CMSIS内核驱动文件详解】3:不同编译器特定的内部函数

文章目录

  • 三、不同编译器特定的内部函数
    • 3.1 RealView/ARM Compiler
      • 3.1.1 获取进程栈指针
      • 3.1.2 设置进程栈指针
      • 3.1.3 获取主栈指针
      • 3.1.4 设置主栈指针
      • 3.1.5 反转无符号短值中的字节顺序
      • 3.1.6 反转有符号短值中的字节顺序,并将符号扩展为整数
      • 3.1.7 删除ldrex创建的排它锁
      • 3.1.8 获取BASEPRI
      • 3.1.9 设置BASEPRI
      • 3.1.10 获取PRIMASK
      • 3.1.11 设置PRIMASK
      • 3.1.12 获取FAULTMASK
      • 3.1.13 设置FAULTMASK
      • 3.1.14 获取CONTROL
      • 3.1.15 设置CONTROL
    • 3.2 ICC/IAR Compiler
      • 3.2.1 获取进程栈指针
      • 3.2.2 设置进程栈指针
      • 3.2.3 获取主栈指针
      • 3.2.4 设置主栈指针
      • 3.2.5 反转无符号短值中的字节顺序
      • 3.2.6 反转值的位顺序
      • 3.2.7 8位独占的LDR指令
      • 3.2.8 16位独占的LDR指令
      • 3.2.9 32位独占的LDR指令
      • 3.2.10 8位独占的STR指令
      • 3.2.11 16位独占的STR指令
      • 3.2.12 32位独占的STR指令
    • 3.3 GNU/gcc Compiler
      • 3.3.1 获取进程栈指针
      • 3.3.2 设置进程栈指针
      • 3.3.3 获取主栈指针
      • 3.3.4 设置主栈指针
      • 3.3.5 获取BASEPRI
      • 3.3.6 设置BASEPRI
      • 3.3.7 获取PRIMASK
      • 3.3.8 设置PRIMASK
      • 3.3.9 获取FAULTMASK
      • 3.3.10 设置FAULTMASK
      • 3.3.11 获取CONTROL
      • 3.3.12 设置CONTROL
      • 3.3.13 反转整数值的字节顺序
      • 3.3.14 反转无符号短值的字节顺序
      • 3.3.15 反转有符号短值中的字节顺序,并将符号扩展为整数
      • 3.3.16 反转值的位顺序
      • 3.3.17 8位独占的LDR指令
      • 3.3.18 16位独占的LDR指令
      • 3.3.19 32位独占的LDR指令
      • 3.3.20 8位独占的STR指令
      • 3.3.21 16位独占的STR指令
      • 3.3.22 32位独占的STR指令
    • 3.4 TASKING Compiler

三、不同编译器特定的内部函数

3.1 RealView/ARM Compiler

#if defined ( __CC_ARM   ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */

#define __enable_fault_irq                __enable_fiq
#define __disable_fault_irq               __disable_fiq

#define __NOP                             __nop
#define __WFI                             __wfi
#define __WFE                             __wfe
#define __SEV                             __sev
#define __ISB()                           __isb(0)
#define __DSB()                           __dsb(0)
#define __DMB()                           __dmb(0)
#define __REV                             __rev
#define __RBIT                            __rbit
#define __LDREXB(ptr)                     ((unsigned char ) __ldrex(ptr))
#define __LDREXH(ptr)                     ((unsigned short) __ldrex(ptr))
#define __LDREXW(ptr)                     ((unsigned int  ) __ldrex(ptr))
#define __STREXB(value, ptr)              __strex(value, ptr)
#define __STREXH(value, ptr)              __strex(value, ptr)
#define __STREXW(value, ptr)              __strex(value, ptr)

3.1.1 获取进程栈指针

/**
 * @brief  Return the Process Stack Pointer
 *
 * @return ProcessStackPointer
 *
 * Return the actual process stack pointer
 */
__ASM uint32_t __get_PSP(void)
{
  mrs r0, psp
  bx lr
}

3.1.2 设置进程栈指针

/**
 * @brief  Set the Process Stack Pointer
 *
 * @param  topOfProcStack  Process Stack Pointer
 *
 * Assign the value ProcessStackPointer to the MSP 
 * (process stack pointer) Cortex processor register
 */
__ASM void __set_PSP(uint32_t topOfProcStack)
{
  msr psp, r0
  bx lr
}

3.1.3 获取主栈指针

/**
 * @brief  Return the Main Stack Pointer
 *
 * @return Main Stack Pointer
 *
 * Return the current value of the MSP (main stack pointer)
 * Cortex processor register
 */
__ASM uint32_t __get_MSP(void)
{
  mrs r0, msp
  bx lr
}

3.1.4 设置主栈指针

/**
 * @brief  Set the Main Stack Pointer
 *
 * @param  topOfMainStack  Main Stack Pointer
 *
 * Assign the value mainStackPointer to the MSP 
 * (main stack pointer) Cortex processor register
 */
__ASM void __set_MSP(uint32_t mainStackPointer)
{
  msr msp, r0
  bx lr
}

3.1.5 反转无符号短值中的字节顺序

/**
 * @brief  Reverse byte order in unsigned short value
 *
 * @param   value  value to reverse
 * @return         reversed value
 *
 * Reverse byte order in unsigned short value
 */
__ASM uint32_t __REV16(uint16_t value)
{
  rev16 r0, r0
  bx lr
}

3.1.6 反转有符号短值中的字节顺序,并将符号扩展为整数

/**
 * @brief  Reverse byte order in signed short value with sign extension to integer
 *
 * @param   value  value to reverse
 * @return         reversed value
 *
 * Reverse byte order in signed short value with sign extension to integer
 */
__ASM int32_t __REVSH(int16_t value)
{
  revsh r0, r0
  bx lr
}

3.1.7 删除ldrex创建的排它锁

/**
 * @brief  Remove the exclusive lock created by ldrex
 *
 * Removes the exclusive lock which is created by ldrex.
 */
__ASM void __CLREX(void)
{
  clrex
}

3.1.8 获取BASEPRI

/**
 * @brief  Return the Base Priority value
 *
 * @return BasePriority
 *
 * Return the content of the base priority register
 */
__ASM uint32_t  __get_BASEPRI(void)
{
  mrs r0, basepri
  bx lr
}

3.1.9 设置BASEPRI

/**
 * @brief  Set the Base Priority value
 *
 * @param  basePri  BasePriority
 *
 * Set the base priority register
 */
__ASM void __set_BASEPRI(uint32_t basePri)
{
  msr basepri, r0
  bx lr
}

3.1.10 获取PRIMASK

/**
 * @brief  Return the Priority Mask value
 *
 * @return PriMask
 *
 * Return state of the priority mask bit from the priority mask register
 */
__ASM uint32_t __get_PRIMASK(void)
{
  mrs r0, primask
  bx lr
}

3.1.11 设置PRIMASK

/**
 * @brief  Set the Priority Mask value
 *
 * @param  priMask  PriMask
 *
 * Set the priority mask bit in the priority mask register
 */
__ASM void __set_PRIMASK(uint32_t priMask)
{
  msr primask, r0
  bx lr
}

3.1.12 获取FAULTMASK

/**
 * @brief  Return the Fault Mask value
 *
 * @return FaultMask
 *
 * Return the content of the fault mask register
 */
__ASM uint32_t  __get_FAULTMASK(void)
{
  mrs r0, faultmask
  bx lr
}

3.1.13 设置FAULTMASK

/**
 * @brief  Set the Fault Mask value
 *
 * @param  faultMask  faultMask value
 *
 * Set the fault mask register
 */
__ASM void __set_FAULTMASK(uint32_t faultMask)
{
  msr faultmask, r0
  bx lr
}

3.1.14 获取CONTROL

/**
 * @brief  Return the Control Register value
 * 
 * @return Control value
 *
 * Return the content of the control register
 */
__ASM uint32_t __get_CONTROL(void)
{
  mrs r0, control
  bx lr
}

3.1.15 设置CONTROL

/**
 * @brief  Set the Control Register value
 *
 * @param  control  Control value
 *
 * Set the control register
 */
__ASM void __set_CONTROL(uint32_t control)
{
  msr control, r0
  bx lr
}

3.2 ICC/IAR Compiler

#elif (defined (__ICCARM__)) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */

#define __enable_irq                              __enable_interrupt        /*!< global Interrupt enable */
#define __disable_irq                             __disable_interrupt       /*!< global Interrupt disable */

static __INLINE void __enable_fault_irq()         { __ASM ("cpsie f"); }
static __INLINE void __disable_fault_irq()        { __ASM ("cpsid f"); }

#define __NOP                                     __no_operation            /*!< no operation intrinsic in IAR Compiler */ 
static __INLINE  void __WFI()                     { __ASM ("wfi"); }
static __INLINE  void __WFE()                     { __ASM ("wfe"); }
static __INLINE  void __SEV()                     { __ASM ("sev"); }
static __INLINE  void __CLREX()                   { __ASM ("clrex"); }

3.2.1 获取进程栈指针

/**
 * @brief  Return the Process Stack Pointer
 *
 * @return ProcessStackPointer
 *
 * Return the actual process stack pointer
 */
uint32_t __get_PSP(void)
{
  __ASM("mrs r0, psp");
  __ASM("bx lr");
}

3.2.2 设置进程栈指针

/**
 * @brief  Set the Process Stack Pointer
 *
 * @param  topOfProcStack  Process Stack Pointer
 *
 * Assign the value ProcessStackPointer to the MSP 
 * (process stack pointer) Cortex processor register
 */
void __set_PSP(uint32_t topOfProcStack)
{
  __ASM("msr psp, r0");
  __ASM("bx lr");
}

3.2.3 获取主栈指针

/**
 * @brief  Return the Main Stack Pointer
 *
 * @return Main Stack Pointer
 *
 * Return the current value of the MSP (main stack pointer)
 * Cortex processor register
 */
uint32_t __get_MSP(void)
{
  __ASM("mrs r0, msp");
  __ASM("bx lr");
}

3.2.4 设置主栈指针

/**
 * @brief  Set the Main Stack Pointer
 *
 * @param  topOfMainStack  Main Stack Pointer
 *
 * Assign the value mainStackPointer to the MSP 
 * (main stack pointer) Cortex processor register
 */
void __set_MSP(uint32_t topOfMainStack)
{
  __ASM("msr msp, r0");
  __ASM("bx lr");
}

3.2.5 反转无符号短值中的字节顺序

/**
 * @brief  Reverse byte order in unsigned short value
 *
 * @param  value  value to reverse
 * @return        reversed value
 *
 * Reverse byte order in unsigned short value
 */
uint32_t __REV16(uint16_t value)
{
  __ASM("rev16 r0, r0");
  __ASM("bx lr");
}

3.2.6 反转值的位顺序

/**
 * @brief  Reverse bit order of value
 *
 * @param  value  value to reverse
 * @return        reversed value
 *
 * Reverse bit order of value
 */
uint32_t __RBIT(uint32_t value)
{
  __ASM("rbit r0, r0");
  __ASM("bx lr");
}

3.2.7 8位独占的LDR指令

/**
 * @brief  LDR Exclusive (8 bit)
 *
 * @param  *addr  address pointer
 * @return        value of (*address)
 *
 * Exclusive LDR command for 8 bit values)
 */
uint8_t __LDREXB(uint8_t *addr)
{
  __ASM("ldrexb r0, [r0]");
  __ASM("bx lr"); 
}

3.2.8 16位独占的LDR指令

/**
 * @brief  LDR Exclusive (16 bit)
 *
 * @param  *addr  address pointer
 * @return        value of (*address)
 *
 * Exclusive LDR command for 16 bit values
 */
uint16_t __LDREXH(uint16_t *addr)
{
  __ASM("ldrexh r0, [r0]");
  __ASM("bx lr");
}

3.2.9 32位独占的LDR指令

/**
 * @brief  LDR Exclusive (32 bit)
 *
 * @param  *addr  address pointer
 * @return        value of (*address)
 *
 * Exclusive LDR command for 32 bit values
 */
uint32_t __LDREXW(uint32_t *addr)
{
  __ASM("ldrex r0, [r0]");
  __ASM("bx lr");
}

3.2.10 8位独占的STR指令

/**
 * @brief  STR Exclusive (8 bit)
 *
 * @param  value  value to store
 * @param  *addr  address pointer
 * @return        successful / failed
 *
 * Exclusive STR command for 8 bit values
 */
uint32_t __STREXB(uint8_t value, uint8_t *addr)
{
  __ASM("strexb r0, r0, [r1]");
  __ASM("bx lr");
}

3.2.11 16位独占的STR指令

/**
 * @brief  STR Exclusive (16 bit)
 *
 * @param  value  value to store
 * @param  *addr  address pointer
 * @return        successful / failed
 *
 * Exclusive STR command for 16 bit values
 */
uint32_t __STREXH(uint16_t value, uint16_t *addr)
{
  __ASM("strexh r0, r0, [r1]");
  __ASM("bx lr");
}

3.2.12 32位独占的STR指令

/**
 * @brief  STR Exclusive (32 bit)
 *
 * @param  value  value to store
 * @param  *addr  address pointer
 * @return        successful / failed
 *
 * Exclusive STR command for 32 bit values
 */
uint32_t __STREXW(uint32_t value, uint32_t *addr)
{
  __ASM("strex r0, r0, [r1]");
  __ASM("bx lr");
}

3.3 GNU/gcc Compiler

#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */

static __INLINE void __enable_irq()               { __ASM volatile ("cpsie i"); }
static __INLINE void __disable_irq()              { __ASM volatile ("cpsid i"); }

static __INLINE void __enable_fault_irq()         { __ASM volatile ("cpsie f"); }
static __INLINE void __disable_fault_irq()        { __ASM volatile ("cpsid f"); }

static __INLINE void __NOP()                      { __ASM volatile ("nop"); }
static __INLINE void __WFI()                      { __ASM volatile ("wfi"); }
static __INLINE void __WFE()                      { __ASM volatile ("wfe"); }
static __INLINE void __SEV()                      { __ASM volatile ("sev"); }
static __INLINE void __ISB()                      { __ASM volatile ("isb"); }
static __INLINE void __DSB()                      { __ASM volatile ("dsb"); }
static __INLINE void __DMB()                      { __ASM volatile ("dmb"); }
static __INLINE void __CLREX()                    { __ASM volatile ("clrex"); }

3.3.1 获取进程栈指针

/**
 * @brief  Return the Process Stack Pointer
 *
 * @return ProcessStackPointer
 *
 * Return the actual process stack pointer
 */
uint32_t __get_PSP(void) __attribute__( ( naked ) );
uint32_t __get_PSP(void)
{
  uint32_t result=0;

  __ASM volatile ("MRS %0, psp\n\t" 
                  "MOV r0, %0 \n\t"
                  "BX  lr     \n\t"  : "=r" (result) );
  return(result);
}

3.3.2 设置进程栈指针

/**
 * @brief  Set the Process Stack Pointer
 *
 * @param  topOfProcStack  Process Stack Pointer
 *
 * Assign the value ProcessStackPointer to the MSP 
 * (process stack pointer) Cortex processor register
 */
void __set_PSP(uint32_t topOfProcStack) __attribute__( ( naked ) );
void __set_PSP(uint32_t topOfProcStack)
{
  __ASM volatile ("MSR psp, %0\n\t"
                  "BX  lr     \n\t" : : "r" (topOfProcStack) );
}

3.3.3 获取主栈指针

/**
 * @brief  Return the Main Stack Pointer
 *
 * @return Main Stack Pointer
 *
 * Return the current value of the MSP (main stack pointer)
 * Cortex processor register
 */
uint32_t __get_MSP(void) __attribute__( ( naked ) );
uint32_t __get_MSP(void)
{
  uint32_t result=0;

  __ASM volatile ("MRS %0, msp\n\t" 
                  "MOV r0, %0 \n\t"
                  "BX  lr     \n\t"  : "=r" (result) );
  return(result);
}

3.3.4 设置主栈指针

/**
 * @brief  Set the Main Stack Pointer
 *
 * @param  topOfMainStack  Main Stack Pointer
 *
 * Assign the value mainStackPointer to the MSP 
 * (main stack pointer) Cortex processor register
 */
void __set_MSP(uint32_t topOfMainStack) __attribute__( ( naked ) );
void __set_MSP(uint32_t topOfMainStack)
{
  __ASM volatile ("MSR msp, %0\n\t"
                  "BX  lr     \n\t" : : "r" (topOfMainStack) );
}

3.3.5 获取BASEPRI

/**
 * @brief  Return the Base Priority value
 *
 * @return BasePriority
 *
 * Return the content of the base priority register
 */
uint32_t __get_BASEPRI(void)
{
  uint32_t result=0;
  
  __ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
  return(result);
}

3.3.6 设置BASEPRI

/**
 * @brief  Set the Base Priority value
 *
 * @param  basePri  BasePriority
 *
 * Set the base priority register
 */
void __set_BASEPRI(uint32_t value)
{
  __ASM volatile ("MSR basepri, %0" : : "r" (value) );
}

3.3.7 获取PRIMASK

/**
 * @brief  Return the Priority Mask value
 *
 * @return PriMask
 *
 * Return state of the priority mask bit from the priority mask register
 */
uint32_t __get_PRIMASK(void)
{
  uint32_t result=0;

  __ASM volatile ("MRS %0, primask" : "=r" (result) );
  return(result);
}

3.3.8 设置PRIMASK

/**
 * @brief  Set the Priority Mask value
 *
 * @param  priMask  PriMask
 *
 * Set the priority mask bit in the priority mask register
 */
void __set_PRIMASK(uint32_t priMask)
{
  __ASM volatile ("MSR primask, %0" : : "r" (priMask) );
}

3.3.9 获取FAULTMASK

/**
 * @brief  Return the Fault Mask value
 *
 * @return FaultMask
 *
 * Return the content of the fault mask register
 */
uint32_t __get_FAULTMASK(void)
{
  uint32_t result=0;
  
  __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
  return(result);
}

3.3.10 设置FAULTMASK

/**
 * @brief  Set the Fault Mask value
 *
 * @param  faultMask  faultMask value
 *
 * Set the fault mask register
 */
void __set_FAULTMASK(uint32_t faultMask)
{
  __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
}

3.3.11 获取CONTROL

/**
 * @brief  Return the Control Register value
* 
*  @return Control value
 *
 * Return the content of the control register
 */
uint32_t __get_CONTROL(void)
{
  uint32_t result=0;

  __ASM volatile ("MRS %0, control" : "=r" (result) );
  return(result);
}

3.3.12 设置CONTROL

/**
 * @brief  Set the Control Register value
 *
 * @param  control  Control value
 *
 * Set the control register
 */
void __set_CONTROL(uint32_t control)
{
  __ASM volatile ("MSR control, %0" : : "r" (control) );
}

3.3.13 反转整数值的字节顺序

/**
 * @brief  Reverse byte order in integer value
 *
 * @param  value  value to reverse
 * @return        reversed value
 *
 * Reverse byte order in integer value
 */
uint32_t __REV(uint32_t value)
{
  uint32_t result=0;
  
  __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
  return(result);
}

3.3.14 反转无符号短值的字节顺序

/**
 * @brief  Reverse byte order in unsigned short value
 *
 * @param  value  value to reverse
 * @return        reversed value
 *
 * Reverse byte order in unsigned short value
 */
uint32_t __REV16(uint16_t value)
{
  uint32_t result=0;
  
  __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
  return(result);
}

3.3.15 反转有符号短值中的字节顺序,并将符号扩展为整数

/**
 * @brief  Reverse byte order in signed short value with sign extension to integer
 *
 * @param  value  value to reverse
 * @return        reversed value
 *
 * Reverse byte order in signed short value with sign extension to integer
 */
int32_t __REVSH(int16_t value)
{
  uint32_t result=0;
  
  __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
  return(result);
}

3.3.16 反转值的位顺序

/**
 * @brief  Reverse bit order of value
 *
 * @param  value  value to reverse
 * @return        reversed value
 *
 * Reverse bit order of value
 */
uint32_t __RBIT(uint32_t value)
{
  uint32_t result=0;
  
   __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
   return(result);
}

3.3.17 8位独占的LDR指令

/**
 * @brief  LDR Exclusive (8 bit)
 *
 * @param  *addr  address pointer
 * @return        value of (*address)
 *
 * Exclusive LDR command for 8 bit value
 */
uint8_t __LDREXB(uint8_t *addr)
{
    uint8_t result=0;
  
   __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
   return(result);
}

3.3.18 16位独占的LDR指令

/**
 * @brief  LDR Exclusive (16 bit)
 *
 * @param  *addr  address pointer
 * @return        value of (*address)
 *
 * Exclusive LDR command for 16 bit values
 */
uint16_t __LDREXH(uint16_t *addr)
{
    uint16_t result=0;
  
   __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
   return(result);
}

3.3.19 32位独占的LDR指令

/**
 * @brief  LDR Exclusive (32 bit)
 *
 * @param  *addr  address pointer
 * @return        value of (*address)
 *
 * Exclusive LDR command for 32 bit values
 */
uint32_t __LDREXW(uint32_t *addr)
{
    uint32_t result=0;
  
   __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
   return(result);
}

3.3.20 8位独占的STR指令

/**
 * @brief  STR Exclusive (8 bit)
 *
 * @param  value  value to store
 * @param  *addr  address pointer
 * @return        successful / failed
 *
 * Exclusive STR command for 8 bit values
 */
uint32_t __STREXB(uint8_t value, uint8_t *addr)
{
   uint32_t result=0;
  
   __ASM volatile ("strexb %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
   return(result);
}

3.3.21 16位独占的STR指令

/**
 * @brief  STR Exclusive (16 bit)
 *
 * @param  value  value to store
 * @param  *addr  address pointer
 * @return        successful / failed
 *
 * Exclusive STR command for 16 bit values
 */
uint32_t __STREXH(uint16_t value, uint16_t *addr)
{
   uint32_t result=0;
  
   __ASM volatile ("strexh %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
   return(result);
}

3.3.22 32位独占的STR指令

/**
 * @brief  STR Exclusive (32 bit)
 *
 * @param  value  value to store
 * @param  *addr  address pointer
 * @return        successful / failed
 *
 * Exclusive STR command for 32 bit values
 */
uint32_t __STREXW(uint32_t value, uint32_t *addr)
{
   uint32_t result=0;
  
   __ASM volatile ("strex %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
   return(result);
}

3.4 TASKING Compiler

#elif (defined (__TASKING__)) /*------------------ TASKING Compiler ---------------------*/
/* TASKING carm specific functions */

/*
 * The CMSIS functions have been implemented as intrinsics in the compiler.
 * Please use "carm -?i" to get an up to date list of all instrinsics,
 * Including the CMSIS ones.
 */

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/588262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

爬虫学习:基本网络请求库的使用

目录 一、urllib网络库 1.urlopen()方法 2.request方法 二、requests网络请求库 1.主要方法 2.requests.get()和requests.post() 一、urllib网络库 1.urlopen()方法 语法格式&#xff1a; urlopen(url,data,timeout,cafile,capath,context) # url:地址 # data:要提交的数据…

[华为OD]C卷 机场航班调度 ,XX市机场停放了多架飞机,每架飞机都有自己的航班号100

题目&#xff1a; XX市机场停放了多架飞机&#xff0c;每架飞机都有自己的航班号CA3385, CZ6678, SC6508 等&#xff0c;航班号的前2个大写字母&#xff08;或数字&#xff09;代表航空公司的缩写&#xff0c;后面4个数字代表航班信息。 但是XX市机场只有一条起飞用跑道&am…

uniapp源码+计划任务 台股平台源码 新股申购 分类后台控制

台股平台源码集成了新股申购与折扣申购功能&#xff0c;结合了计划任务和UniApp源码&#xff0c;为用户提供了一个全面的股票交易解决方案。 经过初步测试&#xff0c;系统可正常运行。测试时没有配置计划任务和WebSocket 。有兴趣的自行研究。 本系统基于PHP 7.3版本开发&am…

【记录】Springboot项目集成docker实现一键部署

公司管理平台完成后&#xff0c;为了方便其他不懂开发的同事部署和测试&#xff0c;集成docker进行一键部署&#xff0c;也为后面自动化部署做准备。本文做个简单记录。 1、安装docker yum install https://download.docker.com/linux/fedora/30/x86_64/stable/Packages/cont…

maven插件:dockerfile-maven-plugin和docker-maven-plugin

Maven插件dockerfile-maven-plugin和docker-maven-plugin都是为Java开发人员提供了一种便捷的方式&#xff0c;通过Maven构建流程来自动化创建、管理和推送Docker镜像。虽然它们有着相似的目标&#xff0c;即集成Docker与Maven项目&#xff0c;但这两个插件在实现细节、功能侧重…

嵌入式全栈开发学习笔记---C语言笔试复习大全3

目录 笔试题3 笔试题4 笔试题5 上一篇介绍了数据类型的长度和数据范围&#xff0c;并且分别讲解了两个经典的笔试题&#xff0c;这一篇我们再来看三道非常经典的考数据类型长度、数据范围和数据类型转换的笔试题。 说明&#xff1a;我们学过单片机的一般都是有C语言基础的了…

Flask路由的使用

Flask 是一个轻量级的 Python Web 框架&#xff0c;其简洁的设计使得构建 Web 应用变得轻而易举。其中&#xff0c;路由是 Flask 中至关重要的一部分&#xff0c;它定义了 URL 与视图函数之间的映射关系&#xff0c;决定了用户请求的处理方式。在本文中&#xff0c;我们将深入探…

vue3项目引入VueQuill富文本编辑器(成功)及 quill-image-uploader 图像模块(未成功)

tip&#xff1a;重点解释都写在代码注释里了&#xff0c;方便理解&#xff0c;所以看起来比较密集 富文本基本使用 项目文件夹路径安装依赖 npm install vueup/vue-quilllatest --save 全局注册&#xff1a;main.js // main.js// 自己项目的一些配置&#xff08;只放了主要…

【C语言】文件操作(万字解读超详细解析)

最好的时光&#xff0c;在路上;最好的生活&#xff0c;在别处。独自上路去看看这个世界&#xff0c;你终将与最好的自己相遇。&#x1f493;&#x1f493;&#x1f493; 目录 • ✨说在前面 &#x1f34b;知识点一&#xff1a;什么是文件&#xff1f; • &#x1f330;1.程序…

【项目学习01_2024.05.01_Day03】

学习笔记 3.6 开发业务层3.6.1 创建数据字典表3.6.2 编写Service3.6.3 测试Service 3.7 接口测试3.7.1 接口完善3.7.2 Httpclient测试 3.8 前后端联调3.8.1 准备环境3.8.2 安装系统管理服务3.8.3 解决跨域问题解决跨域的方法&#xff1a;我们准备使用方案2解决跨域问题。在内容…

模方试用版水面修整,调整水岸线功能进程缓慢该怎么解决?

答&#xff1a;水面修整&#xff0c;第一个点选取准确的高程位置和水边&#xff0c;其他点就可以包含整个水面范围就行&#xff0c;可以绘制大一些。上图绘制区域没有包含到所有的水面&#xff0c;可以尝试下图的红线绘制区域。 模方是一款针对实景三维模型的冗余碎片、水面残缺…

使用Neo4j和Langchain创建知识图谱

使用Neo4j和Langchain创建知识图谱 知识图谱是组织和整合信息的强大工具。通过使用实体作为节点和关系作为边缘&#xff0c;它们提供了一种系统的知识表示方法。这种有条理的表示有利于简化查询、分析和推理&#xff0c;使知识图在搜索引擎、推荐系统、自然语言处理和人工智能…

Docker:centos7安装docker

官网&#xff1a;https://www.docker.com/官网 文档地址 - 确认centos7及其以上的版本 查看当前系统版本 cat /etc/redhat-release- 卸载旧版本 依照官网执行 - yum安装gcc相关 yum -y install gccyum -y install gcc-c- 安装需要的软件包 yum install -y yum-utils- 设置s…

Java 基础重点知识-(泛型、反射、注解、IO)

文章目录 什么是泛型? 泛型有什么用?泛型原理是什么? Java 反射什么是反射? 反射作用是什么?动态代理有几种实现方式? 有什么特点? Java 注解什么是注解, 作用是什么? Java I/O什么是序列化?Java 是怎么实现系列化的?常见的序列化协议有哪些?BIO/NIO/AIO 有什么区别…

可靠的Mac照片恢复解决方案

当您在搜索引擎搜索中输入“Mac照片恢复”时&#xff0c;您将获得数以万计的结果。有很多Mac照片恢复解决方案声称他们可以在Mac OS下恢复丢失的照片。但是&#xff0c;并非互联网上的所有Mac照片恢复解决方案都可以解决您的照片丢失问题。而且您不应该花太多时间寻找可靠的Mac…

数据库(MySQL)—— DQL语句(聚合,分组,排序,分页)

数据库&#xff08;MySQL&#xff09;—— DQL语句&#xff08;聚合&#xff0c;分组&#xff0c;排序&#xff0c;分页&#xff09; 聚合函数常见的聚合函数语法 分组查询语法 排序查询语法 分页查询语法 DQL的执行顺序 我们今天来继续学习MySQL的DQL语句的聚合和分组查询&…

PyCharm 2024新版图文安装教程(python环境搭建+PyCharm安装+运行测试+汉化+背景图设置)

名人说&#xff1a;一点浩然气&#xff0c;千里快哉风。—— 苏轼《水调歌头》 创作者&#xff1a;Code_流苏(CSDN) 目录 一、Python环境搭建二、PyCharm下载及安装三、解释器配置及项目测试四、PyCharm汉化五、背景图设置 很高兴你打开了这篇博客&#xff0c;如有疑问&#x…

Django后台项目开发实战七

为后台管理系统换风格 第七阶段 安装皮肤包 pip install django-grappelli 在 setting.py 注册 INSTALLED_APPS [grappelli,django.contrib.admin,django.contrib.auth,django.contrib.contenttypes,django.contrib.sessions,django.contrib.messages,django.contrib.stat…

LLM应用:工作流workflow创建自定义模版使用

参考: https://www.coze.cn/ 本案例是在coze平台上操作的,也有其他工具支持工作流的创建例如dify;也例如图像生成的comfyui工作流工具 创建自定义模版 可以根据自己需求创建自己的工作流工具;本文案例是创建一个联网搜索的LLM应用: 创建工作流页面: https://www.coze.c…

RTMP 直播推流 Demo(二)—— 音频推流与视频推流

音视频编解码系列目录&#xff1a; Android 音视频基础知识 Android 音视频播放器 Demo&#xff08;一&#xff09;—— 视频解码与渲染 Android 音视频播放器 Demo&#xff08;二&#xff09;—— 音频解码与音视频同步 RTMP 直播推流 Demo&#xff08;一&#xff09;—— 项目…
最新文章