C语言双向链表快速入门教程

链表的声明

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode *head; // 头节点
    DoubleLinkedListNode *tail; // 尾节点
} DoubleLinkedList;

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

创建双向链表

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode head; // 头节点
    DoubleLinkedListNode tail; // 尾节点
} DoubleLinkedList;

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

double_linked_list.c

#include "double_linked_list.h"

// 创建头节点
DoubleLinkedListNode *_newDoubleLinkedListNode(int value) {
    // 申请节点的空间
    DoubleLinkedListNode *node = malloc(sizeof(DoubleLinkedListNode));

    // 初始化
    node->next = NULL;
    node->prev = NULL;
    node->data = value;

    // 返回
    return node;
}

// 创建双向链表
DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = _newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = _newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;

    // 返回
    return list;
}

释放双向链表内存

核心代码:

void freeDoubleLinkedList(DoubleLinkedList *list) {
    // 释放节点内存
    DoubleLinkedListNode *node = list->head->next;
    while (node->next != list->tail) {
        DoubleLinkedListNode *next = node->next;
        free(node);
        node = next;
    }
    // 释放首尾节点的内存
    free(list->head);
    free(list->tail);
    // 释放链表内存
    free(list);
}

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 公共头文件
#include "stdio.h"
#include "string.h"
#include "stdlib.h"

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode *head; // 头节点
    DoubleLinkedListNode *tail; // 尾节点
} DoubleLinkedList;

extern DoubleLinkedList *newDoubleLinkedList(); // 创建双向链表
extern void freeDoubleLinkedList(DoubleLinkedList *list); // 释放双向链表内存

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

double_linked_list.c

#include "double_linked_list.h"

// 创建头节点
DoubleLinkedListNode *_newDoubleLinkedListNode(int value) {
    // 申请节点的空间
    DoubleLinkedListNode *node = malloc(sizeof(DoubleLinkedListNode));

    // 初始化
    node->next = NULL;
    node->prev = NULL;
    node->data = value;

    // 返回
    return node;
}

// 创建双向链表
DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = _newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = _newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;

    // 返回
    return list;
}

// 释放双向链表内存
void freeDoubleLinkedList(DoubleLinkedList *list) {
    // 释放节点内存
    DoubleLinkedListNode *node = list->head->next;
    while (node->next != list->tail) {
        DoubleLinkedListNode *next = node->next;
        free(node);
        node = next;
    }
    // 释放首尾节点的内存
    free(list->head);
    free(list->tail);
    // 释放链表内存
    free(list);
}

判断链表是否为空

核心代码:

int isEmptyDoubleLinkedList(DoubleLinkedList *list) {
    return list != NULL && list->head->next == list->tail;
}

优化创建链表的代码,让头节点下一个节点指向尾节点,尾节点的上一个节点指向头节点。

DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;

    // 关系
    list->head->next = list->tail;
    list->tail->prev = list->head;

    // 返回
    return list;
}

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 公共头文件
#include "stdio.h"
#include "string.h"
#include "stdlib.h"

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode *head; // 头节点
    DoubleLinkedListNode *tail; // 尾节点
} DoubleLinkedList;

extern DoubleLinkedList *newDoubleLinkedList(); // 创建双向链表
extern void freeDoubleLinkedList(DoubleLinkedList *list); // 释放双向链表内存
extern int isEmptyDoubleLinkedList(DoubleLinkedList *list); // 判断是否为空链表

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

double_linked_list.c

#include "double_linked_list.h"

// 创建头节点
DoubleLinkedListNode *newDoubleLinkedListNode(int value) {
    // 申请节点的空间
    DoubleLinkedListNode *node = malloc(sizeof(DoubleLinkedListNode));

    // 初始化
    node->next = NULL;
    node->prev = NULL;
    node->data = value;

    // 返回
    return node;
}

// 创建双向链表
DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;

    // 关系
    list->head->next = list->tail;
    list->tail->prev = list->head;

    // 返回
    return list;
}

// 释放双向链表内存
void freeDoubleLinkedList(DoubleLinkedList *list) {
    // 释放节点内存
    DoubleLinkedListNode *node = list->head->next;
    while (node->next != list->tail) {
        DoubleLinkedListNode *next = node->next;
        free(node);
        node = next;
    }
    // 释放首尾节点的内存
    free(list->head);
    free(list->tail);
    // 释放链表内存
    free(list);
}

// 判断是否为空链表
int isEmptyDoubleLinkedList(DoubleLinkedList *list) {
    return list != NULL && list->head->next == list->tail;
}

获取链表的元素个数

给双向链表的结构加上size这个属性,每个新增的时候,这个数都+1,每次删除的时候都-1,这样这个属性的值代表的就是链表中元素的个数。

核心代码:

int sizeDoubleLinkedList(DoubleLinkedList *list) {
    return list->size;
}

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 公共头文件
#include "stdio.h"
#include "string.h"
#include "stdlib.h"

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode *head; // 头节点
    DoubleLinkedListNode *tail; // 尾节点
    int size; // 节点的个数
} DoubleLinkedList;

extern DoubleLinkedList *newDoubleLinkedList(); // 创建双向链表
extern void freeDoubleLinkedList(DoubleLinkedList *list); // 释放双向链表内存
extern int isEmptyDoubleLinkedList(DoubleLinkedList *list); // 判断是否为空链表
extern int sizeDoubleLinkedList(DoubleLinkedList *list); // 获取链表的元素个数

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

double_linked_list.c

#include "double_linked_list.h"

// 创建头节点
DoubleLinkedListNode *newDoubleLinkedListNode(int value) {
    // 申请节点的空间
    DoubleLinkedListNode *node = malloc(sizeof(DoubleLinkedListNode));

    // 初始化
    node->next = NULL;
    node->prev = NULL;
    node->data = value;

    // 返回
    return node;
}

// 创建双向链表
DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;
    list->size = 0;

    // 关系
    list->head->next = list->tail;
    list->tail->prev = list->head;

    // 返回
    return list;
}

// 释放双向链表内存
void freeDoubleLinkedList(DoubleLinkedList *list) {
    // 释放节点内存
    DoubleLinkedListNode *node = list->head->next;
    while (node->next != list->tail) {
        DoubleLinkedListNode *next = node->next;
        free(node);
        node = next;
    }
    // 释放首尾节点的内存
    free(list->head);
    free(list->tail);
    // 释放链表内存
    free(list);
}

// 判断是否为空链表
int isEmptyDoubleLinkedList(DoubleLinkedList *list) {
    return list != NULL && list->head->next == list->tail;
}

// 获取链表的元素个数
int sizeDoubleLinkedList(DoubleLinkedList *list) {
    return list->size;
}

打印链表的内容

核心代码:

void printDoubleLinkedList(DoubleLinkedList *list) {
    if (list == NULL) {
        return;
    }
    if (list->head == NULL || list->head->next == NULL) {
        return;
    }
    DoubleLinkedListNode *current = list->head->next;
    while (current != list->tail) {
        printf("%d ", current->data);
        current = current->next;
    }
    printf("\n");
}

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 公共头文件
#include "stdio.h"
#include "string.h"
#include "stdlib.h"

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode *head; // 头节点
    DoubleLinkedListNode *tail; // 尾节点
    int size; // 节点的个数
} DoubleLinkedList;

extern DoubleLinkedList *newDoubleLinkedList(); // 创建双向链表
extern void freeDoubleLinkedList(DoubleLinkedList *list); // 释放双向链表内存
extern int isEmptyDoubleLinkedList(DoubleLinkedList *list); // 判断是否为空链表
extern int sizeDoubleLinkedList(DoubleLinkedList *list); // 获取链表的元素个数
extern void printDoubleLinkedList(DoubleLinkedList *list); // 打印链表的内容

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

double_linked_list.c

#include "double_linked_list.h"

// 创建头节点
DoubleLinkedListNode *newDoubleLinkedListNode(int value) {
    // 申请节点的空间
    DoubleLinkedListNode *node = malloc(sizeof(DoubleLinkedListNode));

    // 初始化
    node->next = NULL;
    node->prev = NULL;
    node->data = value;

    // 返回
    return node;
}

// 创建双向链表
DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;
    list->size = 0;

    // 关系
    list->head->next = list->tail;
    list->tail->prev = list->head;

    // 返回
    return list;
}

// 释放双向链表内存
void freeDoubleLinkedList(DoubleLinkedList *list) {
    // 释放节点内存
    DoubleLinkedListNode *node = list->head->next;
    while (node->next != list->tail) {
        DoubleLinkedListNode *next = node->next;
        free(node);
        node = next;
    }
    // 释放首尾节点的内存
    free(list->head);
    free(list->tail);
    // 释放链表内存
    free(list);
}

// 判断是否为空链表
int isEmptyDoubleLinkedList(DoubleLinkedList *list) {
    return list != NULL && list->head->next == list->tail;
}

// 获取链表的元素个数
int sizeDoubleLinkedList(DoubleLinkedList *list) {
    return list->size;
}

// 打印链表的内容
void printDoubleLinkedList(DoubleLinkedList *list) {
    if (list == NULL) {
        return;
    }
    if (list->head == NULL || list->head->next == NULL) {
        return;
    }
    DoubleLinkedListNode *current = list->head->next;
    while (current != list->tail) {
        printf("%d ", current->data);
        current = current->next;
    }
    printf("\n");
}

添加元素到链表末尾

核心代码:

void appendDoubleLinkedList(DoubleLinkedList *list, int value) {
    if (list == NULL || list->head == NULL || list->tail == NULL) {
        return;
    }

    // 构造新节点
    DoubleLinkedListNode *node = newDoubleLinkedListNode(value);

    // 插入到末尾
    DoubleLinkedListNode *oldPrev = list->tail->prev;
    oldPrev->next = node;
    node->prev = oldPrev;
    node->next = list->tail;
    list->tail->prev = node;

    // 元素个数增加
    list->size++;
}

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 公共头文件
#include "stdio.h"
#include "string.h"
#include "stdlib.h"

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode *head; // 头节点
    DoubleLinkedListNode *tail; // 尾节点
    int size; // 节点的个数
} DoubleLinkedList;

extern DoubleLinkedList *newDoubleLinkedList(); // 创建双向链表
extern void freeDoubleLinkedList(DoubleLinkedList *list); // 释放双向链表内存
extern int isEmptyDoubleLinkedList(DoubleLinkedList *list); // 判断是否为空链表
extern int sizeDoubleLinkedList(DoubleLinkedList *list); // 获取链表的元素个数
extern void printDoubleLinkedList(DoubleLinkedList *list); // 打印链表的内容
extern void appendDoubleLinkedList(DoubleLinkedList *list, int value); // 将元素添加到链表末尾

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

double_linked_list.c

#include "double_linked_list.h"

// 创建头节点
DoubleLinkedListNode *newDoubleLinkedListNode(int value) {
    // 申请节点的空间
    DoubleLinkedListNode *node = malloc(sizeof(DoubleLinkedListNode));

    // 初始化
    node->next = NULL;
    node->prev = NULL;
    node->data = value;

    // 返回
    return node;
}

// 创建双向链表
DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;
    list->size = 0;

    // 关系
    list->head->next = list->tail;
    list->tail->prev = list->head;

    // 返回
    return list;
}

// 释放双向链表内存
void freeDoubleLinkedList(DoubleLinkedList *list) {
    // 释放节点内存
    DoubleLinkedListNode *node = list->head->next;
    while (node->next != list->tail) {
        DoubleLinkedListNode *next = node->next;
        free(node);
        node = next;
    }
    // 释放首尾节点的内存
    free(list->head);
    free(list->tail);
    // 释放链表内存
    free(list);
}

// 判断是否为空链表
int isEmptyDoubleLinkedList(DoubleLinkedList *list) {
    return list != NULL && list->head->next == list->tail;
}

// 获取链表的元素个数
int sizeDoubleLinkedList(DoubleLinkedList *list) {
    return list->size;
}

// 打印链表的内容
void printDoubleLinkedList(DoubleLinkedList *list) {
    if (list == NULL) {
        return;
    }
    if (list->head == NULL || list->head->next == NULL) {
        return;
    }
    DoubleLinkedListNode *current = list->head->next;
    while (current != list->tail) {
        printf("%d ", current->data);
        current = current->next;
    }
    printf("\n");
}

// 将元素添加到链表末尾
void appendDoubleLinkedList(DoubleLinkedList *list, int value) {
    if (list == NULL || list->head == NULL || list->tail == NULL) {
        return;
    }

    // 构造新节点
    DoubleLinkedListNode *node = newDoubleLinkedListNode(value);

    // 插入到末尾
    DoubleLinkedListNode *oldPrev = list->tail->prev;
    oldPrev->next = node;
    node->prev = oldPrev;
    node->next = list->tail;
    list->tail->prev = node;

    // 元素个数增加
    list->size++;
}

main.c

#include "double_linked_list.h"

int main(void) {
    // 创建链表
    DoubleLinkedList *list = newDoubleLinkedList();

    // 添加数据
    appendDoubleLinkedList(list, 11);
    printDoubleLinkedList(list);

    appendDoubleLinkedList(list, 22);
    printDoubleLinkedList(list);

    appendDoubleLinkedList(list, 33);
    printDoubleLinkedList(list);

    // 释放链表
    freeDoubleLinkedList(list);

    return 0;
}

输出:

11
11 22
11 22 33

移除元素

核心代码:

int removeDoubleLinkedList(DoubleLinkedList *list, int value) {
    int index = -1;
    if (list == NULL || list->head == NULL || list->tail == NULL || list->size <= 0) {
        return index;
    }

    // 查找对应的元素
    DoubleLinkedListNode *current = list->head->next;
    while (current != list->tail) {
        index++;
        if (current->data == value) {
            break;
        }
        current = current->next;
    }

    // 如果找到了,则删除
    if (index >= 0 && index < list->size) {
        DoubleLinkedListNode *oldPrev = current->prev;
        DoubleLinkedListNode *oldNext = current->next;
        oldPrev->next = oldNext;
        oldNext->prev = oldPrev;
        free(current); // 记得释放节点的内存
    }

    // 元素个数减少
    list->size--;

    // 返回
    return index;
}

double_linked_list.h

#ifndef ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H
#define ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

// 公共头文件
#include "stdio.h"
#include "string.h"
#include "stdlib.h"

// 双向链表的节点
typedef struct doubleLinkedListNode {
    int data;
    struct doubleLinkedListNode *next; // 下一个节点
    struct doubleLinkedListNode *prev; // 上一个节点
} DoubleLinkedListNode;

// 双向链表
typedef struct doubleLinkedList {
    DoubleLinkedListNode *head; // 头节点
    DoubleLinkedListNode *tail; // 尾节点
    int size; // 节点的个数
} DoubleLinkedList;

extern DoubleLinkedList *newDoubleLinkedList(); // 创建双向链表
extern void freeDoubleLinkedList(DoubleLinkedList *list); // 释放双向链表内存
extern int isEmptyDoubleLinkedList(DoubleLinkedList *list); // 判断是否为空链表
extern int sizeDoubleLinkedList(DoubleLinkedList *list); // 获取链表的元素个数
extern void printDoubleLinkedList(DoubleLinkedList *list); // 打印链表的内容
extern void appendDoubleLinkedList(DoubleLinkedList *list, int value); // 将元素添加到链表末尾
extern int removeDoubleLinkedList(DoubleLinkedList *list, int value); // 从链表中移除元素,成功返回其索引,失败返回-1

#endif //ZDPC_ALGORITHM_DEV_DOUBLE_LINKED_LIST_H

double_linked_list.c

#include "double_linked_list.h"

// 创建头节点
DoubleLinkedListNode *newDoubleLinkedListNode(int value) {
    // 申请节点的空间
    DoubleLinkedListNode *node = malloc(sizeof(DoubleLinkedListNode));

    // 初始化
    node->next = NULL;
    node->prev = NULL;
    node->data = value;

    // 返回
    return node;
}

// 创建双向链表
DoubleLinkedList *newDoubleLinkedList() {
    // 申请链表的内存
    DoubleLinkedList *list = malloc(sizeof(DoubleLinkedList));

    // 头节点
    DoubleLinkedListNode *head = newDoubleLinkedListNode(0);

    // 尾结点
    DoubleLinkedListNode *tail = newDoubleLinkedListNode(0);

    // 初始化
    list->head = head;
    list->tail = tail;
    list->size = 0;

    // 关系
    list->head->next = list->tail;
    list->tail->prev = list->head;

    // 返回
    return list;
}

// 释放双向链表内存
void freeDoubleLinkedList(DoubleLinkedList *list) {
    // 释放节点内存
    DoubleLinkedListNode *node = list->head->next;
    while (node->next != list->tail) {
        DoubleLinkedListNode *next = node->next;
        free(node);
        node = next;
    }
    // 释放首尾节点的内存
    free(list->head);
    free(list->tail);
    // 释放链表内存
    free(list);
}

// 判断是否为空链表
int isEmptyDoubleLinkedList(DoubleLinkedList *list) {
    return list != NULL && list->head->next == list->tail;
}

// 获取链表的元素个数
int sizeDoubleLinkedList(DoubleLinkedList *list) {
    return list->size;
}

// 打印链表的内容
void printDoubleLinkedList(DoubleLinkedList *list) {
    if (list == NULL) {
        return;
    }
    if (list->head == NULL || list->head->next == NULL) {
        return;
    }
    DoubleLinkedListNode *current = list->head->next;
    while (current != list->tail) {
        printf("%d ", current->data);
        current = current->next;
    }
    printf("\n");
}

// 将元素添加到链表末尾
void appendDoubleLinkedList(DoubleLinkedList *list, int value) {
    if (list == NULL || list->head == NULL || list->tail == NULL) {
        return;
    }

    // 构造新节点
    DoubleLinkedListNode *node = newDoubleLinkedListNode(value);

    // 插入到末尾
    DoubleLinkedListNode *oldPrev = list->tail->prev;
    oldPrev->next = node;
    node->prev = oldPrev;
    node->next = list->tail;
    list->tail->prev = node;

    // 元素个数增加
    list->size++;
}

// 从链表中移除元素
int removeDoubleLinkedList(DoubleLinkedList *list, int value) {
    int index = -1;
    if (list == NULL || list->head == NULL || list->tail == NULL || list->size <= 0) {
        return index;
    }

    // 查找对应的元素
    DoubleLinkedListNode *current = list->head->next;
    while (current != list->tail) {
        index++;
        if (current->data == value) {
            break;
        }
        current = current->next;
    }

    // 如果找到了,则删除
    if (index >= 0 && index < list->size) {
        DoubleLinkedListNode *oldPrev = current->prev;
        DoubleLinkedListNode *oldNext = current->next;
        oldPrev->next = oldNext;
        oldNext->prev = oldPrev;
        free(current); // 记得释放节点的内存
    }

    // 元素个数减少
    list->size--;

    // 返回
    return index;
}

main.c

#include "double_linked_list.h"

int main(void) {
    // 创建链表
    DoubleLinkedList *list = newDoubleLinkedList();

    // 添加数据
    appendDoubleLinkedList(list, 11);
    appendDoubleLinkedList(list, 22);
    appendDoubleLinkedList(list, 33);
    printDoubleLinkedList(list);
    printf("元素个数:%d\n",list->size);

    // 删除数据
    removeDoubleLinkedList(list,22);
    printDoubleLinkedList(list);
    printf("元素个数:%d\n",list->size);

    // 释放链表
    freeDoubleLinkedList(list);

    return 0;
}

输出:

11 22 33
元素个数:3
11 33
元素个数:2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/589490.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spark RDD的分区与依赖关系

Spark RDD的分区与依赖关系 RDD分区 RDD&#xff0c;Resiliennt Distributed Datasets&#xff0c;弹性式分布式数据集&#xff0c;是由若干个分区构成的&#xff0c;那么这每一个分区中的数据又是如何产生的呢&#xff1f;这就是RDD分区策略所要解决的问题&#xff0c;下面我…

音视频开发之旅——实现录音器、音频格式转换器和播放器(PCM文件转换为WAV文件、使用LAME编码MP3文件)(Android)

本文主要讲解的是实现录音器、音频转换器和播放器&#xff0c;在实现过程中需要把PCM文件转换为WAV文件&#xff0c;同时需要使用上一篇文章交叉编译出来的LAME库编码MP3文件。本文基于Android平台&#xff0c;示例代码如下所示&#xff1a; AndroidAudioDemo Android系列&am…

Golang | Leetcode Golang题解之第64题最小路径和

题目&#xff1a; 题解&#xff1a; func minPathSum(grid [][]int) int {if len(grid) 0 || len(grid[0]) 0 {return 0}rows, columns : len(grid), len(grid[0])dp : make([][]int, rows)for i : 0; i < len(dp); i {dp[i] make([]int, columns)}dp[0][0] grid[0][0]…

服务器IP选择

可以去https://ip.ping0.cc/查看IP的具体情况 1.IP位置--如果是国内用&#xff0c;国外服务器的话建议选择日本&#xff0c;香港这些比较好&#xff0c;因为它们离这里近&#xff0c;一般延时低&#xff08;在没有绕一圈的情况下&#xff09;。 不过GPT的话屏蔽了香港IP 2. 企…

Mac 安装John the Ripper 破解rar(zip)压缩文件

注&#xff1a;仅以此篇记录我满足好奇心所逝去的十几个小时。&#xff08;自娱自乐&#xff09; 1、首先利用 brewhome 包管理工具 安装john the ripper &#xff1a; brew install john-jumbo 如果没有安装brewhome 利用如下命令安装&#xff1a; /bin/zsh -c "$(c…

LeetCode-网络延迟时间(Dijkstra算法)

每日一题 今天刷到一道有关的图的题&#xff0c;需要求单源最短路径&#xff0c;因此使用Dijkstra算法。 题目要求 有 n 个网络节点&#xff0c;标记为 1 到 n。 给你一个列表 times&#xff0c;表示信号经过 有向 边的传递时间。 times[i] (ui, vi, wi)&#xff0c;其中 …

【跟马少平老师学AI】-【神经网络是怎么实现的】(七-1)词向量

一句话归纳&#xff1a; 1&#xff09;神经网络不仅可以处理图像&#xff0c;还可以处理文本。 2&#xff09;神经网络处理文本&#xff0c;先要解决文本的表示&#xff08;图像的表示用像素RGB&#xff09;。 3&#xff09;独热编码词向量&#xff1a; 词表&#xff1a;{我&am…

OpenVINO安装教程 Docker版

从 Docker 映像安装IntelDistribution OpenVINO™ 工具套件 本指南介绍了如何使用预构建的 Docker 镜像/手动创建镜像来安装 OpenVINO™ Runtime。 Docker Base 映像支持的主机操作系统&#xff1a; Linux操作系统 Windows (WSL2) macOS(仅限 CPU exectuion) 您可以使用预…

【跟马少平老师学AI】-【神经网络是怎么实现的】(八)循环神经网络

一句话归纳&#xff1a; 1&#xff09;词向量与句子向量的循环神经网络&#xff1a; x(i)为词向量。h(i)为含前i个词信息的向量。h(t)为句向量。 2&#xff09;循环神经网络的局部。 每个子网络都是标准的全连接神经网络。 3&#xff09;对句向量增加全连接层和激活函数。 每个…

I2C接口18路LED呼吸灯驱动IS31FL3218互相替代SN3218替换HTR3218

I2C接口18路LED呼吸灯控制电路IC 该型号IC为QFN24接口&#xff0c;属于小众产品&#xff0c;IS31FL3218、SN3218、HTR3218S管脚兼容&#xff0c;需要注意的是HTR3218管脚与其他型号不兼容。 I2C接口可实现多个LED灯的呼吸灯控制&#xff0c;可实现单色控制18个LED灯&#xff0…

【ARM Cache 系列文章 11.2 -- ARM Cache 组相联映射】

请阅读【ARM Cache 系列文章专栏导读】 文章目录 Cache 组相联映射组相联映射原理多路组相连缓存的优势多路组相连缓存的代价关联度&#xff08;Associativity&#xff09; 上篇文章&#xff1a;【ARM Cache 系列文章 11.1 – ARM Cache 全相连 详细介绍】 Cache 组相联映射 A…

笔记1--Llama 3 超级课堂 | Llama3概述与演进历程

1、Llama 3概述 https://github.com/SmartFlowAI/Llama3-Tutorial.git 【Llama 3 五一超级课堂 | Llama3概述与演进历程】 2、Llama 3 改进点 【最新【大模型微调】大模型llama3技术全面解析 大模型应用部署 据说llama3不满足scaling law&#xff1f;】…

Deep learning Part Five RNN--24.4.29

接着上期&#xff0c;CBOW模型无法解决文章内容过长的单词预测的&#xff0c;那该如何解决呢&#xff1f; 除此之外&#xff0c;根据图中5-5的左图所示&#xff0c;在CBOW模型的中间层求单词向量的和&#xff0c;这时就会出现另一个问题的&#xff0c;那就是上下文的单词的顺序…

Redis Zset的底层原理

Redis Zset的底层原理 ZSet也就是SortedSet&#xff0c;其中每一个元素都需要指定一个score值和member值&#xff1a; 可以根据score值排序后member必须唯一可以根据member查询分数 因此&#xff0c;zset底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。之前学…

ZooKeeper知识点总结及分布式锁实现

最初接触ZooKeeper是之前的一个公司的微服务项目中&#xff0c;涉及到Dubbo和ZooKeeper&#xff0c;ZooKeeper作为微服务的注册和配置中心。好了&#xff0c;开始介绍ZooKeeper了。 目录 1.ZooKeeper的基本概念 2.ZooKeeper的节点&#xff08;ZNode&#xff09; 3. ZooKeep…

【Java笔记】第5章:函数

前言1. 函数的理解2. 函数的基本使用3. 函数的参数4. 函数的返回值5. 函数的执行机制6. 函数的递归调用结语 ↓ 上期回顾: 【Java笔记】第4章&#xff1a;深入学习循环结构 个人主页&#xff1a;C_GUIQU 归属专栏&#xff1a;【Java学习】 ↑ 前言 各位小伙伴大家好&#xff…

[随记]Mac安装Docker及运行开源Penpot

下载Docker Desktop for Mac&#xff1a;https://www.docker.com/products/docker-desktop/ 安装Docker Desktop for Mac&#xff0c;安装完成后&#xff0c;启动Docker&#xff0c;然后在终端输入&#xff1a; docker version 在Mac电脑的Desktop&#xff0c;随便创建一个文…

【真实体验】使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试【YashanDB迁移体验官】

一、前言 说一下我和崖山数据库的结缘&#xff0c;大概在去年吧&#xff0c;因为我经常在墨天轮写文章&#xff0c;看到崖山数据库推出了一崖山体验官的活动&#xff0c;我就报名参加了。第一次体验了崖山数据库&#xff0c;也测试了我司数据库到崖山数据库的兼容性&#xff0…

钉钉手机端调试前端H5项目流程

此流程以Vue项目为例 一、操作步骤 在根目录下 vue.config.js 文件中将 devServer.host 设置为 0.0.0.0 // vue.config.js module.exports {devServer: {host: 0.0.0.0,...},...}本地启动项目&#xff0c;获取 Network App running at:- Local: http://localhost:8080/ -…

JAVA 学习·泛型(二)——通配泛型

有关泛型的基本概念&#xff0c;参见我的前一篇博客 JAVA 学习泛型&#xff08;一&#xff09;。 协变性 泛型不具备协变性 在介绍通配泛型之前&#xff0c;先来看一下下面的例子。我们定义了一个泛型栈&#xff1a; import java.util.ArrayList; class GenericStack<E>…
最新文章