【人工智能Ⅱ】实验5:自然语言处理实践(情感分类)

实验5:自然语言处理实践(情感分类)

一:实验目的与要求

1:掌握RNN、LSTM、GRU的原理。

2:学习用RNN、LSTM、GRU网络建立训练模型,并对模型进行评估。

3:学习用RNN、LSTM、GRU网络做预测。

二:实验内容

选择公开数据集,用LSTM、GRU或相应的改进模型实现情感分类。

如:IMDB电影评论数据集,IMDB是一个对电影评论标注为正向评论与负向评论的数据集,共有25000条文本数据作为训练集,25000条文本数据作为测试集。百度平台该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词。

三:实验环境

本实验所使用的环境条件如下表所示。

操作系统

Ubuntu(Linux)

程序语言

Python(3.8.10)

第三方依赖

numpy, matplotlib,keras等

四:方法流程

1:使用imdb.load_data编写数据加载代码,设置相关参数,例如max_features、maxlen、batch_size等。

2:编写LSTM和GRU模型的网络代码,并打印网络结构进行分析。

3:编写上述RNN模型编译、训练和测试的代码。

4:根据训练结果进行可视化绘图,例如损失值和准确率。

5:根据实验结果,对比上述RNN模型。

五:实验展示(训练过程的数据打印和可视化、测试和应用的结果展示)

1:GRU模型的实现

GRU模型的代码搭建如下表所示。

model = models.Sequential()

model.add(layers.Embedding(max_features, 32, input_length = maxlen))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Dropout(0.2))

model.add(layers.CuDNNGRU(32))  # return_sequences = False

model.add(layers.Dense(1, activation = 'sigmoid'))


通过【model.summary()】打印GRU模型的网络结构,如下图所示。由下图可知,GRU模型的训练参数量为336673。

在模型编译环节,由于情感分析只需要分类为正向情绪positive(符号化为1)和负向情绪negative(符号化为0),因此GRU模型采用二分类交叉熵(binary_crossentropy)作为损失函数。同时,优化器选用rmsprop,评价指标选用准确率。

在模型训练环节,批次大小选为32,迭代次数选为15,验证集在输入训练集中的占比为20%。GRU模型的训练过程如下表所示。

Epoch 1/15

625/625 [==============================] - 31s 10ms/step - loss: 0.5597 - acc: 0.6617 - val_loss: 0.2946 - val_acc: 0.8784

Epoch 2/15

625/625 [==============================] - 6s 10ms/step - loss: 0.2560 - acc: 0.8980 - val_loss: 0.2974 - val_acc: 0.8778

Epoch 3/15

625/625 [==============================] - 6s 9ms/step - loss: 0.1908 - acc: 0.9268 - val_loss: 0.2786 - val_acc: 0.8842

Epoch 4/15

625/625 [==============================] - 6s 9ms/step - loss: 0.1511 - acc: 0.9433 - val_loss: 0.3029 - val_acc: 0.8822

Epoch 5/15

625/625 [==============================] - 6s 10ms/step - loss: 0.1237 - acc: 0.9564 - val_loss: 0.2970 - val_acc: 0.8898

Epoch 6/15

625/625 [==============================] - 6s 10ms/step - loss: 0.0941 - acc: 0.9675 - val_loss: 0.3680 - val_acc: 0.8750

Epoch 7/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0716 - acc: 0.9766 - val_loss: 0.3606 - val_acc: 0.8806

Epoch 8/15

625/625 [==============================] - 6s 10ms/step - loss: 0.0428 - acc: 0.9870 - val_loss: 0.4644 - val_acc: 0.8740

Epoch 9/15

625/625 [==============================] - 6s 9ms/step - loss: 0.0266 - acc: 0.9916 - val_loss: 0.4629 - val_acc: 0.8736

Epoch 10/15

625/625 [==============================] - 7s 10ms/step - loss: 0.0154 - acc: 0.9954 - val_loss: 0.5867 - val_acc: 0.8754

Epoch 11/15

625/625 [==============================] - 7s 12ms/step - loss: 0.0087 - acc: 0.9976 - val_loss: 0.6492 - val_acc: 0.8770

Epoch 12/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0076 - acc: 0.9984 - val_loss: 0.8017 - val_acc: 0.8686

Epoch 13/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0057 - acc: 0.9988 - val_loss: 0.9574 - val_acc: 0.8700

Epoch 14/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0043 - acc: 0.9989 - val_loss: 0.9877 - val_acc: 0.8722

Epoch 15/15

625/625 [==============================] - 7s 11ms/step - loss: 0.0019 - acc: 0.9996 - val_loss: 1.0454 - val_acc: 0.8652

针对上述训练结果,利用plt绘制曲线变化图。

GRU模型的训练损失值和验证损失值,如下图所示。

GRU模型的训练准确率和验证准确率,如下图所示。

 基于利用数据集训练过后的模型,在测试集上进行测试,结果如下图所示。最终的测试准确率为:84.70%。

2:LSTM模型的实现

LSTM模型的代码搭建如下表所示。

model = models.Sequential()

model.add(layers.Embedding(max_features, 32, input_length = maxlen))

model.add(layers.Dropout(0.2))

model.add(layers.CuDNNLSTM(32))  # return_sequences = False

model.add(layers.Dense(1, activation = 'sigmoid'))


通过【model.summary()】打印GRU模型的网络结构,如下图所示。由下图可知,LSTM模型的训练参数量为328481。

在模型编译环节,由于情感分析只需要分类为正向情绪positive(符号化为1)和负向情绪negative(符号化为0),因此GRU模型采用二分类交叉熵(binary_crossentropy)作为损失函数。同时,优化器选用rmsprop,评价指标选用准确率。

在模型训练环节,批次大小选为32,迭代次数选为15,验证集在输入训练集中的占比为20%。GRU模型的训练过程如下表所示。

Epoch 1/15

625/625 [==============================] - 18s 27ms/step - loss: 0.5685 - acc: 0.6912 - val_loss: 0.3342 - val_acc: 0.8610

Epoch 2/15

625/625 [==============================] - 17s 27ms/step - loss: 0.2768 - acc: 0.8936 - val_loss: 0.2835 - val_acc: 0.8870

Epoch 3/15

625/625 [==============================] - 16s 26ms/step - loss: 0.2250 - acc: 0.9143 - val_loss: 0.3460 - val_acc: 0.8634

Epoch 4/15

625/625 [==============================] - 15s 24ms/step - loss: 0.2012 - acc: 0.9244 - val_loss: 0.3467 - val_acc: 0.8796

Epoch 5/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1847 - acc: 0.9314 - val_loss: 0.2746 - val_acc: 0.8916

Epoch 6/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1696 - acc: 0.9402 - val_loss: 0.3191 - val_acc: 0.8808

Epoch 7/15

625/625 [==============================] - 15s 25ms/step - loss: 0.1641 - acc: 0.9403 - val_loss: 0.2730 - val_acc: 0.8960

Epoch 8/15

625/625 [==============================] - 15s 25ms/step - loss: 0.1609 - acc: 0.9429 - val_loss: 0.2994 - val_acc: 0.8942

Epoch 9/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1518 - acc: 0.9450 - val_loss: 0.2790 - val_acc: 0.8924

Epoch 10/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1315 - acc: 0.9551 - val_loss: 0.3164 - val_acc: 0.8740

Epoch 11/15

625/625 [==============================] - 15s 25ms/step - loss: 0.1341 - acc: 0.9521 - val_loss: 0.2852 - val_acc: 0.8972

Epoch 12/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1223 - acc: 0.9568 - val_loss: 0.3203 - val_acc: 0.8924

Epoch 13/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1170 - acc: 0.9599 - val_loss: 0.2889 - val_acc: 0.8920

Epoch 14/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1029 - acc: 0.9637 - val_loss: 0.3150 - val_acc: 0.8872

Epoch 15/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1008 - acc: 0.9662 - val_loss: 0.3256 - val_acc: 0.8942

针对上述训练结果,利用plt绘制曲线变化图。

GRU模型的训练损失值和验证损失值,如下图所示。

GRU模型的训练准确率和验证准确率,如下图所示。

基于利用数据集训练过后的模型,在测试集上进行测试,结果如下图所示。最终的测试准确率为:87.72%。

3:GRU模型和LSTM模型的对比

基于本实验第1节和第2节部分的内容,可以得到:

(1)GRU模型的训练参数量为336673,而LSTM模型的训练参数量为328481。因此,GRU模型的训练参数量略多于LSTM模型。

(2)GRU模型在训练过程中的验证集上的最高准确率为88.98%,而LSTM模型在训练过程中的验证集上的最高准确率为89.72%。因此,GRU模型的验证准确率略低于LSTM模型。

(3)GRU模型最终的测试准确率为84.70%,而L,STM模型最终的测试准确率为87.72%。因此,GRU模型的测试准确率略低于LSTM模型。

    综上所述,GRU模型的效果比LSTM模型略差。

六:实验结论

1:斯坦福官方平台的IMDB电影评论数据集Large Movie Review Dataset v1.0(Sentiment Analysis)。

2:添加正则化项(如:dropout)可以有效防止模型过拟合,提高泛化能力。同时,选择合适的优化器(如:adam、rmsprop)可以加速模型的训练过程。

3:隐藏层单元数、学习率、批次大小等超参数的调整对于LSTM和GRU模型的表现性能具有显著影响。通过合理的超参数调整,可以进一步提高模型的性能。

4:GRU模型可以解决RNN中不能长期记忆和反向传播中的梯度等问题,但是比LSTM简单,容易进行训练。

5:在LSTM模型中,信息的添加和移除通过“门”结构来实现,“门”结构在训练过程中会去学习该保存或遗忘哪些信息。其中,LSTM模型具有三个门,遗忘门,输入门,输出门。

6:循环神经网络是时间上的展开,处理的是序列结构的信息。而递归神经网络是是空间上的展开,处理的是树状结构的信息。

7:电影评论情感分析的实践流程示意图,如下图所示。

七:遇到的问题和解决方法

    暂无。

八:程序源代码

    以下代码为GRN示例,LSTM可同理实现。完整代码可见ipynb附件。

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import imdb

from keras import models

from keras import layers

from keras.preprocessing.sequence import pad_sequences

max_features = 10000  # Only include top 10,000 words in the vocabulary

maxlen = 500  # Cut off each review after 500 words

batch_size = 32

(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words = max_features)

X_train.shape, X_test.shape

X_train = pad_sequences(X_train, maxlen = maxlen)

X_test = pad_sequences(X_test, maxlen = maxlen)

X_train.shape, X_test.shape

model = models.Sequential()

model.add(layers.Embedding(max_features, 32, input_length = maxlen))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Dropout(0.2))

model.add(layers.CuDNNGRU(32))  # return_sequences = False

model.add(layers.Dense(1, activation = 'sigmoid'))

model.summary()

model.compile(loss = 'binary_crossentropy', optimizer = 'rmsprop', metrics = ['acc'])

history = model.fit(X_train, y_train, batch_size = batch_size, epochs = 15, validation_split = 0.2)

loss = history.history['loss']

val_loss = history.history['val_loss']

acc = history.history['acc']

val_acc = history.history['val_acc']

epochs = range(1, 16)

plt.plot(epochs, loss, 'go', label = 'Training Loss')

plt.plot(epochs, val_loss, 'g', label = 'Validation Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

plt.plot(epochs, acc, 'bo', label = 'Training Accuarcy')

plt.plot(epochs, val_acc, 'b', label = 'Validation Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

model.evaluate(X_test, y_test)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/593079.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

递归、搜索与回溯算法:记忆化搜索

例题一 解法(暴搜 -> 记忆化搜索 -> 动态规划): 算法思路: 暴搜: a. 递归含义:给 dfs ⼀个使命,给他⼀个数 n ,返回第 n 个斐波那契数的值; b. 函数体&…

JVM知识总汇(JVM面试题篇5.1)

个人理解,所学有限,若有不当,还请指出 1.JVM是由哪些部分组成,运行流程是什么? JVM为java虚拟机,是java程序的运行环境(其实是java字节码文件的运行环境),能够实现一次编…

idea中使用GlassFish服务器启动项目

idea中使用GlassFish服务器进行测试 1.项目背景 当前在研究openMDM项目, 不过该项目不是springboot项目, 并且是使用GlassFish进行war部署的, 但是需要在idea中进行项目的二次开发,故需要进行idea启动项目并且进行开发和调试 2.GlassFish是什么 GlassFish是一个web服务器, …

分层解耦-三层架构

一、使用三层架构的原因 如果所有代码都写在controller类的方法中,这里面包含了数据访问的代码、逻辑处理的代码、接收请求和响应数据的代码,如图示例: 而我们在进行软件设计以及软件开发的时候,要尽量让每一个接口、类或者方法的职责更加单…

深入理解分布式事务⑧ ---->MySQL 事务的实现原理 之 MySQL 事务流程(MySQL 事务执行流程 和 恢复流程)详解

目录 MySQL 事务的实现原理 之 MySQL 事务流程(MySQL 事务执行流程 和 恢复流程)详解MySQL 事务流程1、MySQL 事务执行流程1-1:MySQL 事务执行流程如图: 2、MySQL 事务恢复流程2-1:事务恢复流程如下图: MyS…

西门子V90参数移植方法

西门子V90参数移植方法 应用方面 由于设备老化损坏,需要更换V90驱动器,但是由于新驱动器与旧驱动器出现版本不一样时参数就会无法直接下载到新的驱动器里面,为了保证更换驱动器的稳定性最好能使用之前设备的参数,所以写了关于V9…

车载电子电器架构 —— 如何理解和使用Update bit

车载电子电器架构 —— 如何理解和使用Update bit 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不…

2024抖音直播带货-直播间拆解:抖店运营从入门到精通(56节课)

起号原理方式以及节点处理 类目的选择选品思路 付费流量投放原理 直播间进阶玩法 课程内容 直播间搭建标准自然起号(0-1)原理 方式 以及节点处理 老号重启(0-1)原理 方式 以及节点处理 账号在线人数稳定 原理 方式 以及节点处理 账号销售额放大 原理 方式 以及节点处理…

ubuntu20配置深度学习环境

目录 系统环境安装anaconda文件的安装anaconda环境配置anaconda换中科大源常用的anaconda命令 安装显卡驱动安装CUDA下载cudnn安装pytorch更换conda源选择对应的pytorch版本进行安装 系统环境 ubuntu20,安装了ros noetic。 参考博客主要有: https://g…

【Trick】conda安装python依赖时出现429 Client Error

起因 我在根据yml文件安装依赖和创建虚拟环境时,出现报错,主要报错信息为以下两点: 【1】Collecting package metadata (repodata.json): failed 【2】requests.exceptions.HTTPError: 429 Client Error: Too Many Requests for url: https…

Git在无法访问github的访问方法

Git无法下载github上的源代码 代理的情况 问题:Failed to connect to github.com port 443 after 21100 ms: Couldnt connect to server 提示我们需要为Git单独配置代理。 查看我们的代理端口  为git 设置全局代理 git config --global http.proxy 127.0.0.1:&l…

【LeetCode刷题记录】简单篇-104-二叉树的最大深度

【题目描述】 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 【测试用例】 示例1: 输入:root [3,9,20,null,null,15,7] 输出:3 示例2: 输入&#…

颜值高的浏览器 ARC

可以使用 chrome 的插件,和书签,现在可以下载,别的不说这个ui 的颜值是可以的, 而且很丝滑

思考题 —— Windows 登录密码

1.windows登录的明文密码,存储过程是怎么样的?密文存放在哪个文件下?该文件是否可以打开,并且查看到密文? 系统通过保存密码的哈希值来确保安全性,进行加密存储的方法通常为NTLM或Kerberos身份认证协议。该…

SFOS1:开发环境搭建

一、简介 最近在学习sailfish os的应用开发,主要内容是QmlPython。所以,在开发之前需要对开发环境(virtualBox官方SDKcmake编译器python)进行搭建。值得注意的是,我的开发环境是ubuntu22.04。如果是windows可能大同小异…

Codeforces Round 943 (Div. 3 ABCDEFG1G2题) 视频讲解

A. Maximize? Problem Statement You are given an integer x x x. Your task is to find any integer y y y ( 1 ≤ y < x ) (1\le y<x) (1≤y<x) such that gcd ⁡ ( x , y ) y \gcd(x,y)y gcd(x,y)y is maximum possible. Note that if there is more tha…

Webshell绕过技巧分析之-base64/HEX/Reverse/Html/Inflate/Rot13

在网络安全运营&#xff0c;护网HVV&#xff0c;重保等活动的过程中&#xff0c;webshell是一个无法绕过的话题。通常出现的webshell都不是以明文的形式出现&#xff0c;而是针对webshell关键的内容进行混淆&#xff0c;编码来绕过网络安全产品&#xff08;IDS&#xff0c;WAF&…

Linux USB转串口设备路径的查找方法

1、USB转串口设备 USB转串口设备是在嵌入式软件开发过程中经常要使用的&#xff0c;常常用于对接各种各样的串口设备。如果一台linux主机上使用多个usb转串口设备时&#xff0c;应用程序中就需要知道自己操作的是哪个串口设备。串口设备在系统上电时&#xff0c;由于驱动加载的…

短剧在线搜索表格-送模板

短剧在线搜索表格-附模板 介绍电脑界面手机界面送附加功能&#xff1a;反馈缺失短剧送&#xff1a;资源更新源头获取 介绍 你好&#xff01; 这是你第一次使用 金山在线文档 所生成的短剧搜索表格&#xff0c;支持批量导入自己转存的短剧名字和链接&#xff0c;实现在线搜索&a…

Kotlin基础知识总结(三万字超详细)

1、条件语句 &#xff08;1&#xff09;if条件 if条件表达式&#xff0c;每一个分支最后一条语句就是该分支的返回值。适用于每个分支返回值类型一致这种情况。 fun getDegree(score: Int): String{val result: String if(score 100){"非常优秀"}else if(score …