【设计模式】单例模式的前世今生

文章目录

    • 引言
    • 简介
    • 起航!向“确保某个类在系统中只有一个实例”进发 ⛵️
      • Lazy Singleton
      • Double-checked locking(DCL) Singleton
      • Volatile Singleton
      • Atomic Singleton
      • Meyers Singleton
    • 附:C++静态对象的初始化

引言

说起单例模式,我想,即便屏幕前的你此前没有系统学习过设计模式,也应该听说过它的大名。

但是,这篇文章的重点不是去聊这个模式在实际生产过程中怎么用,而是想聊一下这个模式发展的历史。如果你的目的是想了解其具体用法,你可以在检索一下其他人写的总结,再往下看的话,可能不会有你想要的答案。

简介

在软件系统中,经常有一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性以及良好的效率。

单例模式是一种设计模式,其核心目的是确保某个类在系统中只有一个实例,并提供一个全局访问点来访问这个实例。

“确保某个类在系统中只有一个实例”——这个目的听起来似乎很简单,不要觉得荒谬,某些特定的情况下,我们的系统中确实只需要某个类的一个实例就可以了,这样既能满足实际使用场景,又能减少内存开销,避免资源的多重占用,提升性能。

倘若我们从这个目的出发——“确保某个类在系统中只有一个实例”,现在的任务就是:设计某种手段以达到我们的目的。

起航!向“确保某个类在系统中只有一个实例”进发 ⛵️

也许,刚看到这个目标的时候你会有点疑惑:这不是很简单吗?既然你想要确保系统中只有一个某个类的对象,那我就只创建一个对象不就好了吗?

听起来好像没错,但是“确保某个类在系统中只有一个实例”,这应该是类设计者的责任,而不是使用者的责任。

现在,让我们从类设计者的角度重新审视这个问题。

我们知道,创建类的实例——这个动作是借由类的构造函数完成的,换句话说,我们可以确定问题的突破点是在构造函数身上。那么,如何绕过常规的构造器,提供一种机制来保证一个类只有一个实例呢?

首先,我们先解决构造函数的权限问题。C++中的权限说起来一共有三种:public,protect,private。而无论对于用户还是派生类来讲,真正的权限事实上只有两种:

  • 对于用户而言,public权限是可访问的,private权限和protect权限是不可访问的;
  • 对于派生类而言,private是不可访问的,protect与public是可访问的;

而如果将这个类的构造函数用public去修饰,意味着用户可以随意创建对象,“创建对象”这个动作无法受到我们的管控,因此,如果想要限制用户“不那么自由”的创建实例,我们应当将构造函数声明为private:

class Singleton{
  private:
  	Singleton();//私有构造函数
  	static Singleton* m_instance;
  public:
  	static Singleton* getInstance();//全局访问点
}
Singleton* Singleton::m_instance = NULL;

Lazy Singleton

那么如何“确保某个类在系统中只有一个实例”?很容易想到:

1 Singleton* Singleton::getInstance(){
2  if(m_instance == nullptr){
3    	m_instance = new Singleton();
4  }
5  return m_instance;
6 }

懒汉版(Lazy Singleton):单例实例在第一次被使用时才进行初始化,这叫做延迟初始化,也叫做懒加载。

Lazy Singleton存在内存泄露的问题,这里有两种解决方法:

  1. 使用智能指针
  2. 使用静态的嵌套类对象

对于第二种解决方法,代码如下:

// version 1.1
class Singleton
{
private:
    static Singleton* instance;
private:
    Singleton() { };
    ~Singleton() { };
    Singleton(const Singleton&);
    Singleton& operator=(const Singleton&);
private:
    class Deletor {
    public:
        ~Deletor() {
            if(Singleton::instance != NULL)
                delete Singleton::instance;
        }
    };
    static Deletor deletor;
public:
    static Singleton* getInstance() {
        if(instance == NULL) {
            instance = new Singleton();
        }
        return instance;
    }
};

// init static member
Singleton* Singleton::instance = NULL;

在程序运行结束时,系统会调用静态成员deletor的析构函数,该析构函数会删除单例的唯一实例。使用这种方法释放单例对象有以下特征:

  • 在单例类内部定义专有的嵌套类。
  • 在单例类内定义私有的专门用于释放的静态成员。
  • 利用程序在结束时析构全局变量的特性,选择最终的释放时机。

这是一个简单的实现版本,”有条件“ 的完成了我们的目标,因为这个版本只能针对于单线程下的程序,是个“线程非安全”版本,一旦线程数大于1,这个版本将不再起作用。

假设现在有两个线程:thread A与thread B。

thread A 执行完第2行,还没来得及执行第3行时,thread B 抢到了时间片,由于此时的m_instance仍为空,因此thread也能进入if分支,然后m_instance就被创建了两次。

有没有什么办法能够快速修复这个“bug“呢?

Double-checked locking(DCL) Singleton

很自然的,你会想到加锁:

1 Singleton* Singleton::getInstance(){
2  Lock lock;
3  if(m_instance == nullptr){
4    	m_instance = new Singleton();
5  }
6  return m_instance;
7 }

如你所愿,我们在这个版本里加了一个锁,再遇到上述场景时,由于thread A抢到了锁并且还没释放,因此,thread A能正常创建实例,并且当thread A出了函数体释放了锁之后,thread B 进入函数体,由于此时m_instance已经被创建,因此并不会被创建两次。

问题解决了吗?

按照上面的分析,好像是的。但是,你有没有注意到当实例已经被创建后的场景?

假设实例m_instance已经被创建,在之后的场景中,程序再次进入该函数时,都会先创建锁,然后判断m_instance是否为空,然后返回。每次进入函数体都会创建锁,但是这个锁只有第一次才有真正的作用,之后都是在浪费资源。

这个版本能够保证线程安全,但是锁的代价过高。

还有没有改进版本呢?

于是,双检查锁版本诞生了:

1 Singleton* Singleton::getInstance(){
2 if(m_instance == nullptr){
3  	Lock lock; 基于作用域的加锁,超出作用域,自动调用析构函数解锁
4  	if(m_instance == nullptr){
5    		m_instance = new Singleton();
6  	}
7 }
8  	return m_instance;
9 }

之前的版本是不管三七二十一,都加锁,现在的版本是进入函数体之后,先问一次m_instance是不是空,根据结果去决定是否加锁。规避了上一个版本锁的代价过高的问题。

有的小伙伴可能会在这里犯迷糊:认为第二个if分支没有必要,即可以删去第4行。

事实上,如果删去了第4行,那么情况就会变得跟第一个版本一模一样,只要线程能同时通过第2行的检查,那么这个实例就有被创建多次的可能。就算此时加了这个锁,无非也就是多等一会儿,没有其他作用。

这个版本看起来很完美,问题似乎已经被我们解决了!

但是我要告诉你,这个版本在很长一段时间内迷惑了很多人,包括一些专家都认为这个版本已经达到目标了。直到2000年左右,Java领域的某些研究者才发现有问题,而且很快在几乎所有的语言领域都发现这种实现有漏洞。由于内存读写reorder不安全,会导致双检查锁失效。

怎么样的一个失效问题呢?

让我们将目光聚焦到这行代码上:

m_instance = new Singleton();

这行代码最终会被编译器编译成一段指令序列,线程是在指令层次抢时间片的。但是这个指令有时候跟我们的假设不一样。

比如上面那行代码通常情况下到了指令层次之后,可以划分为三个动作:

  1. 分配一片内存;
  2. 在这片内存上执行初始化操作;
  3. 将得到的内存地址赋值给m_instance;

是这三个动作没错,但是到了指令层面之后,它们的顺序却可能由于编译器优化而被打乱成下面这样:

  1. 分配一片内存;
  2. 将最后得到的内存地址赋值给m_instance;
  3. 在这片内存上执行初始化操作;

看到了吗?第二步和第三步的顺序可能会被颠倒!

1 Singleton* Singleton::getInstance(){
2 if(m_instance == nullptr){
3  	Lock lock;
4  	if(m_instance == nullptr){
5    		m_instance = new Singleton();
6  	}
7 }
8  	return m_instance;
9 }

现在再次回到之前的场景,假设有两个thread,thread A执行第5步之后,由于编译器优化而执行了:

  1. 分配一片内存;
  2. 将最后得到的内存地址赋值给m_instance;

第三步还没来得及执行,时间片就被thread B抢走了,由于此时m_instance已经被赋予了地址,因此m_instance不再为空!当thread B再次进入函数体之后,由于第2步判断m_instance是否为空的结果为false,导致被直接返回。而事实上m_instance并没有完成初始化操作,此时还不能使用。

当这个问题被发现后,由于是编译器优化导致了此类问题的出现,于是人们敦促编译器厂商给出问题解决方案。

Volatile Singleton

反过来想想,编译器优化的目的是提升程序性能,只是不巧导致了这个问题的出现,如果为了一个单例模式的实现直接禁止这种优化,属实有点说不过去。这个时候java和C#就很聪明,在各自的语言中加了一个关键字:Volatile,其作用也很直截了当:禁止指令重排。

C++呢?Visual C++嫌标准委员会动作太慢,2005年左右,在自家编译器里也加入了volatile关键字,但是由于是个人行为,很显然不能跨平台。之后C++11正式将volatile作为关键字纳入标准:

class Singleton {  
public:  
    static Singleton* instance() {  
        if (pInstance == 0) {  
            Lock lock;  
            if (pInstance == 0) {  
                pInstance = new Singleton;  
            }  
        }  
        return pInstance;  
    }  
private:  
    static Singleton * volatile pInstance;  
    Singleton(){  
    }  
};  

volatile这个关键字有两层语义:

第一层语义是可见性。可见性指的是在一个线程中对该变量的修改会马上由工作内存(Work Memory)写回主内存(Main Memory),所以会马上反应在其它线程的读取操作中,即看到的都是最新的结果。

第二层语义是禁止指令重排序优化。我们写的代码(尤其是多线程代码),由于编译器优化,在实际执行的时候可能与我们编写的顺序不同。

Atomic Singleton

另外在C++11 将原子操作纳入了标准,我们可以通过标准提供的原子操作来处理该问题。

通过给原子变量设置 std::std::memory_order_xxx 来防止 CPU 的指令重排操作。

//C++11版本之后的跨平台实现(volatile)

std::atomic<Singleton*> Singleton::m_instance;
std::mutex Singleton::m_mutex;

Singleton* Singleton::getInstance(){
	Singleton* tmp = m_instance.load(std::memory_order_relaxed);
	std::atomic_thread_fence(std::memory_order_acquire);//获取内存fence
	if(tmp == nullptr){
		std::lock_guard<std::mutex> lock(m_mutex);
		tmp = m_instance.load(std::memory_order_relaxed);
		if(tmp == nullptr){
			tmp = new Singleton;
			std::atomic_thread_fence(std::memory_order_relaced);//释放内存fence
			m_instance.store(tmp,std::memory_order_relaxed);
		}
	}
	return tmp;
}

Meyers Singleton

《Effective C++》的作者Meyer,在<<Effective C++>>3rd Item4中,提出了一种到目前为止最简洁高效的解决方案:

template<typename T>
class Singleton
{
public:
    static T& getInstance()
    {
        static T value;
        return value;
    }
 
private:
    Singleton();
    ~Singleton();
};

非常优雅的一种实现。

先说结论:

  • 单线程下,正确。
  • C++11及以后的版本(如C++14)的多线程下,正确。
  • C++11之前的多线程下,不一定正确。

原因在于在C++11之前的标准中并没有规定local static变量的内存模型,所以很多编译器在实现local static变量的时候仅仅是进行了一次check(参考《深入探索C++对象模型》),于是getInstance函数被编译器改写成这样了:

bool initialized = false;
char value[sizeof(T)];
 
T& getInstance()
{
    if (!initialized)
    {
       initialized = true;
       new (value) T();
    }
    return *(reinterpret_cast<T*>(value));
}

于是乎它就是不是线程安全的了。

但是在C++11却是线程安全的,这是因为新的C++标准规定了当一个线程正在初始化一个变量的时候,其他线程必须得等到该初始化完成以后才能访问它。

附:C++静态对象的初始化

non-local static对象(函数外)

C++规定,non-local static 对象的初始化发生在main函数执行之前,也即main函数之前的单线程启动阶段,所以不存在线程安全问题。但C++没有规定多个non-local static 对象的初始化顺序,尤其是来自多个编译单元的non-local static对象,他们的初始化顺序是随机的。

local static 对象(函数内)

对于local static 对象,其初始化发生在控制流第一次执行到该对象的初始化语句时。多个线程的控制流可能同时到达其初始化语句。

在C++11之前,在多线程环境下local static对象的初始化并不是线程安全的。具体表现就是:如果一个线程正在执行local static对象的初始化语句但还没有完成初始化,此时若其它线程也执行到该语句,那么这个线程会认为自己是第一次执行该语句并进入该local static对象的构造函数中。这会造成这个local static对象的重复构造,进而产生内存泄露问题。所以,local static对象在多线程环境下的重复构造问题是需要解决的。

而C++11则在语言规范中解决了这个问题。C++11规定,在一个线程开始local static 对象的初始化后到完成初始化前,其他线程执行到这个local static对象的初始化语句就会等待,直到该local static 对象初始化完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/597157.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】整数,浮点数数据在内存中的存储

Tiny Spark get dazzling some day. 目录 1. 整数在内存中的存储1.1 原码、反码、补码1.1 大小端存储1.2.1 字节序分类1.2.2 判断字节序 2. 浮点数在内存中的存储2.1 浮点数的存储形式2.2 浮点数的 “ 存 ”2.2.1 S2.2.2 E2.2.3 F 2.3 浮点数的 “ 取 ”2.3.1 S2.3.2 E、F 3. 浮…

ISIS的基本概念

1.ISIS概述 IS-IS是一种链路状态路由协议&#xff0c;IS-IS与OSPF在许多方面非常相似&#xff0c; 例如运行IS-IS协议的直连设备之间通过发送Hello报文发现彼此&#xff0c;然后建立邻接关系&#xff0c;并交互链路状态信息。 CLNS由以下三个部分组成&#xff1a; CLNP&#xf…

新的项目springboot

buybuyshenglombok <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency> 添加依赖 lombok package com.example.demo.pojo;import lombok.AllArgsConstructor; import lombok.Data; import …

LLM应用:prompt提示让大模型总结生成Mermaid流程图;充当角色输出

1、prompt提示让大模型总结生成Mermaid流程图 生成内容、总结文章让大模型Mermaid流程图展示&#xff1a; mermaid 美人鱼, 是一个类似 markdown&#xff0c;用文本语法来描述文档图形(流程图、 时序图、甘特图)的工具&#xff0c;您可以在文档中嵌入一段 mermaid 文本来生成 …

项目实战 | 如何恰当的处理 Vue 路由权限

前言 哈喽&#xff0c;小伙伴你好&#xff0c;我是 嘟老板。最近接了一个成本千万级的前端项目运维工作&#xff0c;本着 知己知彼 的态度&#xff0c;我将整个前端的大致设计思路过了一遍。不看不知道&#xff0c;一看…吓一跳。光是 路由权限 这块儿的设计&#xff0c;都让我…

linux上Redis安装使用

环境centOS8 redis是缓存数据库&#xff0c;主要是用于在内存中存储数据&#xff0c;内存的读写很快&#xff0c;加快系统读写数据库的速度 一、Linux 安装 Redis 1. 下载Redis 官网下载Downloads - Redis 历史版本Index of /releases/ 本文中安装的版本为&#xff1a;h…

Celery + redis 异步分布式任务队列安装测试

Celery 异步分布式任务队列 Celery 5.4.0 官方文档 环境&#xff1a;3台 centos7.9 普通用户 redisSchedulerworkerdp951dp96111dp971 文章目录 Celery 异步分布式任务队列1、Celery 介绍2、安装部署2.1 安装消息中间件&#xff08;broker&#xff09;2.2 安装Celery 3、功能…

mac 本地使用docker 运行es,kibana

1.下载 m芯片一些版本不支持.踩过坑.翻看官网才知道只有部分镜像支持m芯片 https://hub.docker.com/添加链接描述 docker pull elasticsearch:7.17.21 docker pull kibana:7.17.21镜像已经下载下来了 2.创建文件映射-挂载 /Users/lin/dev/dockerMsg 其中lin是自己的用户名…

【数据结构/C语言】单链表的实现

目录 一、单链表的基本概念 单链表的简介 单链表的特点 二、预备知识 三、单链表的基本结构 四、单链表的基本操作 1.链表打印 2.申请节点 3.头插 4.尾插 5.头删 6.尾删 7.查找节点 8.指定位置之前插入 9.指定位置之后插入 10.删除给定节点 11.删除给定节点之…

90、动态规划-最长的有效括号

思路&#xff1a; 找出有效括号并且是最长的有效括号 dp[i]表示以i结尾的括号最长是多少 然后从1开始 因为从0位置不管是左括号还是右括号都是无法形成一个完成的括号。所以dp[0]0&#xff1b; 当i1时候&#xff0c;判断括号是否是&#xff09;如果不是那么无法结尾&#x…

cmake进阶:变量的作用域说明一(从函数作用域方面)

一. 简介 如同 C 语言一样&#xff0c;在 cmake 中&#xff0c;变量也有作用域的概念&#xff0c;本文我们就来聊一聊关于 cmake 中变量作用域的问题。 接下来从三个方面进行介绍&#xff1a;函数作用域、目录作用域以及全局作用域。 二. 函数作用域 我把这个作用域叫做函数…

pycharm安装pandas包

import pandas时提示未安装pandas&#xff0c;点击下图红框选项&#xff0c;进行pandas安装 pycharm底部会有安装中的提示 pycharm底部提示红框的内容&#xff0c;说明安装成功 这个时候就可以看到import pandas不再报错了

LeetCode 611. 有效三角形的个数

原题链接&#xff1a;611. 有效三角形的个数 - 力扣&#xff08;LeetCode&#xff09; 题目说&#xff0c;给定一个包含非负整数的数组 num&#xff0c;返回其中可以组成三角形三条边的三元组个数。 示例&#xff1a; nums [4, 2, 3, 4]&#xff1b; 有效组合如下&#xff1a;…

NIO和NIO.2对比

Java NIO (New Input/Output) 是从Java 1.4版本开始引入的一个新的I/O API&#xff0c;用于替代原来的BIO&#xff08;Blocking I/O&#xff09;API。NIO提供了更加灵活和高效的网络通信方式&#xff0c;特别适合于高吞吐量的网络编程。NIO的主要特点是非阻塞模式&#xff0c;它…

数据结构(C):玩转顺序表

&#x1f37a;0.前言 &#x1f3b7;1.线性表 &#x1f3b8;2.顺序表 &#x1f4c0;动态顺序表的实现 &#x1f4bf;初始化 &#x1f4bf;检查容量是否满了&#xff0c;进行扩容 &#x1f4bf;插入&#xff1a;头插和尾插 &#x1f4bf;删除&#xff1a;头删和尾删 &…

Python实现2048游戏

提供学习或者毕业设计使用,功能基本都有,不能和市场上正式游戏相提比论,请理性对待! 在这篇博客中,我们将使用 Python 和 Pygame 库来编写经典的 2048 游戏。2048 是一个益智类游戏,通过在 4x4 网格上滑动方块并合并它们来创建一个新的数字,直到获得数字 2048 或者无法继…

bfs之走迷宫

文章目录 走迷宫广度优先遍历代码Java代码打印路径 走迷宫 给定一个 nm 的二维整数数组&#xff0c;用来表示一个迷宫&#xff0c;数组中只包含 0或 1&#xff0c;其中 0表示可以走的路&#xff0c;1表示不可通过的墙壁。 最初&#xff0c;有一个人位于左上角 (1,1) 处&#…

leetcode-岛屿数量-99

题目要求 思路 1.使用广度优先遍历&#xff0c;将数组中所有为1的元素遍历一遍&#xff0c;遍历过程中使用递归&#xff0c;讲该元素的上下左右四个方向的元素值也置为0 2.统计一共执行过多少次&#xff0c;次数就是岛屿数量 代码实现 class Solution { public:int solve(vec…

mac电脑如何安装python及环境搭建

&#xff08;1&#xff09;进入官网&#xff1a;Download Python | Python.org&#xff0c;根据自己电脑选择python (2)这里我选择的是mac,点击&#xff1a;macos&#xff0c;选择最近版本并点击进入 (3)选择mac版本&#xff1a; (4)点击就可以进入下载&#xff1a; (5)下载好之…

网站防御XSS攻击的有效策略与实施步骤

随着互联网应用的普及与发展&#xff0c;网站安全已成为众多企业关注的焦点&#xff0c;而XSS&#xff08;Cross-Site Scripting&#xff09;攻击作为最常见的Web安全漏洞之一&#xff0c;对用户数据安全构成严重威胁。本文将详细介绍网站如何有效防御XSS攻击&#xff0c;并提供…
最新文章