【JVM】类加载机制及双亲委派模型

目录

一、类加载过程

1. 加载

2. 连接

a. 验证

b. 准备

c. 解析

3. 初始化

二、双亲委派模型 

类加载器 

双亲委派模型的工作过程

双亲委派模型的优点


一、类加载过程

JVM的类加载机制是JVM在运行时,将 .class 文件加载到内存中并转换为Java类的过程。它是Java语言实现跨平台特性的核心之一。

对于一个类来说,它的生命周期是这样的:

其中,类加载的过程主要可以分成 5 个步骤(前 5 步),中间 3 步都属于连接,所以也可以说类加载过程主要分成 3 个步骤:

1. 加载

2. 连接

  • 验证
  • 准备
  • 解析

3. 初始化

下面我们来看每个步骤的具体执行内容:

1. 加载

“加载”阶段是整个“类加载”过程中的一个阶段,它和类加载是不同的。

加载阶段是指将类的字节码文件加载到内存中的过程。在加载 Loading 阶段,Java虚拟机需要完成以下三件事情:

1)通过一个类的全限定名来获取定义此类的二进制字节流。(全限定名,例如:java.lang.String)

2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。

3)在内存中生成一个代表这个类的 .class 对象,作为方法区这个类的各种数据的访问入口。

2. 连接

a. 验证

确保加载的类符合JVM规范和Java语言规范,即确保读到的 .class 文件(字节码文件),是合法的格式。

文件格式如下图所示,此处就不详细介绍了。

b. 准备

给类的静态变量分配内存空间,并设置类变量的默认初始值。

比如此时有这样一行代码:

public static int value = 123;

它是初始化 value 的值为0(默认值),而非 123。

c. 解析

解析阶段是 JVM 将类、接口、字段和方法(运行时常量池)的符号引用解析为直接引用。

  • 符号引用的获取: 在加载阶段和连接阶段之前,Java虚拟机会将类、接口、字段和方法的符号引用存储在运行时常量池中。解析阶段首先要做的就是从运行时常量池中获取符号引用。

  • 符号引用的匹配: 获取到符号引用后,解析阶段会尝试将这些符号引用匹配到目标对象(类、接口、字段或方法)的直接引用。匹配的过程包括查找目标对象在内存中的位置以及确定访问权限等。

  • 直接引用的生成: 一旦符号引用成功匹配到目标对象,解析阶段就会生成对应的直接引用。直接引用是指直接指向内存中目标对象的指针或偏移量,它能够直接在程序中被使用。

  • 解析结果的存储: 解析阶段最终会将生成的直接引用存储在运行时常量池中,以便后续的使用。

3. 初始化

初始化阶段是类加载过程的最后一个阶段,主要负责执行类变量的赋值操作和静态代码块的初始化。

  • 执行类变量的赋值操作,即按照程序员在代码中指定的初始值为静态变量赋值。这些值可以是程序中直接赋予的值,也可以是静态代码块中的计算结果。
  • 如果类中存在静态代码块,则会按照在代码中的顺序执行静态代码块中的内容。静态代码块中可以包含任意合法的 Java 代码,用于执行一些静态初始化操作。

上述的一系列类加载过程,可以简单概况为以下内容:

  1. 加载(Loading): 加载阶段是指将类的字节码文件加载到内存中的过程。当程序中使用到某个类时,JVM会通过类的全限定名(Fully Qualified Name)来加载类。类加载器会根据类的全限定名在文件系统或网络中查找相应的.class文件,并将其加载到内存中。

  2. 连接(Linking): 连接阶段包括验证、准备和解析三个步骤:

    • 验证(Verification): 确保加载的类符合JVM规范和Java语言规范,以防止恶意代码的注入。
    • 准备(Preparation): 为类的静态变量分配内存空间,并设置默认初始值。
    • 解析(Resolution): 将类、接口、字段和方法的符号引用解析为直接引用,以便后续执行。
  3. 初始化(Initialization): 初始化阶段是类加载过程的最后一个阶段,它负责执行类构造器的<clinit>方法,即对类的静态变量进行赋值操作和执行静态代码块。

二、双亲委派模型 

提到类加载机制,就不得不提“双亲委派模型”。它是 Java 类加载机制中的一种设计思想,JVM的类加载机制采用的就是双亲委派模型。

类加载器 

在 JVM 中,有一个重要的组件称为“类加载器”,它负责加载 Java 类文件到 JVM 中(根据类的全限定名来查找并加载对应的类文件,例如:java.lang.String)。JVM 中的类加载器默认有以下三种:

  1. 启动类加载器(Bootstrap Class Loader): 它是 JVM 的内置类加载器,负责加载 Java 核心类库(rt.jar)等核心类文件(标准库),是整个类加载器层次结构的顶层。由于它是用本地代码实现的,所以在 Java 中无法直接获取对其的引用。

  2. 扩展类加载器(Extension Class Loader): 它是用来加载 Java 平台的扩展库(ext 目录下的jar包)的类加载器。它的父类加载器是启动类加载器。通常情况下,我们可以通过 ClassLoader.getSystemClassLoader().getParent() 获取到扩展类加载器的引用。

  3. 应用程序类加载器(Application Class Loader): 也称为系统类加载器,它是用来加载应用程序的类文件的类加载器,它负责加载类路径(classpath)上指定的类库。它的父类加载器是扩展类加载器。通常情况下,我们可以通过 ClassLoader.getSystemClassLoader() 获取到应用程序类加载器的引用。 

除了上述的三种主要的类加载器之外,JVM 还支持用户自定义的类加载器,用户可以根据需要实现自己的类加载器来加载特定的类文件。用户自定义的类加载器通常继承自  java.lang.ClassLoader 类,并重写其 findClass() 方法来实现类加载的逻辑。

双亲委派模型的工作过程

双亲委派模型的工作过程如下: 

  • 当一个类加载器收到类加载请求时,它不会立即尝试自己去加载这个类,而是先将这个请求委派给它的父类加载器去完成。这个过程会一直向上进行,直到达到最顶层的启动类加载器。只有当父类加载器反馈自己无法完成这个加载请求(即在其搜索范围中没有找到所需的类)时,子加载器才会尝试自己去加载这个类。

双亲委派模型的优点

上述设定有以下几个优点:

  1. 安全性: 双亲委派模型可以帮助保证 Java 类库的安全性。由于类加载器会先委托给父类加载器加载类,这样可以防止恶意类被加载到 JVM 中。父类加载器通常是由 JVM 提供的,是由Java官方实现,因此可以信任。这有助于防止在 Java 应用程序中意外加载不安全或有潜在安全风险的类。例如,我们在代码中自己定义了一个 java.lang.String 这样的类,根据双亲委派模型的设定,这个类会被启动类加载器找到并加载,此时加载的是Java核心类,而自定义的 java.lang.String 类实际上是不会被加载的,这就保证了Java核心类库中的类无法被替换。

  2. 避免重复加载类: 双亲委派模型可以避免同一个类被多次加载到 JVM 中。当一个类被加载后,它会被缓存起来,以避免重复加载。这有助于节省内存空间,并且可以确保所有代码都是基于相同的类实例运行。

  3. 统一性: 双亲委派模型可以确保 Java 类库的一致性。因为所有的类加载请求都会经过父类加载器,所以无论是在 Java 应用程序中还是在 Java 核心类库中,都可以保证加载的是同一个类。

双亲委派模型在生活中的类比:

  • 假设你在一家公司工作,你的经理接到了一个任务,他会根据任务的性质和自己的能力来判断是否能够完成这个任务。
  • 如果经理认为自己无法完成任务,他会将任务转交给更高级别的领导,如部门主管或总经理。
  • 只有当更高级别的领导无法完成任务时,任务才会逐级向下转交,直到有可能被转交给你。这种机制确保了任务能够被最适合的人完成,提高了工作效率和质量。

双亲委派模型,是Java虚拟机(JVM)遵循的默认类加载机制。但也有一些方式能够打破这个机制,这里简单介绍:

  • 自定义类加载器: 开发自定义类加载器可以完全改变类加载的方式。通过实现自定义的ClassLoader类,可以实现不同于双亲委派模型的加载行为。例如,可以实现一个不遵循双亲委派模型的类加载器,直接从指定的位置加载类,而不是按照双亲委派模型从上至下逐级加载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/600860.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第8篇:创建Nios II工程之读取Switch的值<一>

Q&#xff1a;本期我们再添加一个PIO组件设为输入&#xff0c;创建Nios II工程读取输入值显示在LED上。 A&#xff1a;在前2期创建的控制LED工程的Platform Designer系统基础上再添加一个PIO核&#xff0c;参数设置为18位和单向输入模式&#xff0c;表示DE2-115开发板上的18个…

rmallox勒索病毒肆虐,如何保护网络安全?

rmallox勒索病毒与网络安全的关系可以从以下几个方面来阐述&#xff1a; 一、rmallox勒索病毒的特性 rmallox勒索病毒是一种极具破坏性的计算机病毒&#xff0c;它具有多个显著特性&#xff0c;这些特性使得该病毒对网络安全构成了严重威胁。具体来说&#xff0c;rmallox病毒具…

六西格玛项目的核心要素:理论学习、实践应用与项目经验

许多朋友担心&#xff0c;没有项目经验是否就意味着无法考取六西格玛证书。针对这一疑问&#xff0c;张驰咨询为大家详细解答。 首先&#xff0c;需要明确的是&#xff0c;六西格玛项目不仅仅是一种管理工具或方法&#xff0c;更是一种追求卓越、持续改进的思维方式。它强调通…

Java反序列化-CC11链

前言 这条链子的主要作用是为了可以在 Commons-Collections 3.2.1 版本中使用&#xff0c;而且还是无数组的方法。这条链子适用于 Shiro550漏洞 CC11链子流程 CC2 CC6的结合体 CC2 这是CC2的流程图&#xff0c;我们取的是后面那三个链子&#xff0c;但是由于CC2 只能在 c…

2024年第九届数维杯数学建模A题思路分享

文章目录 1 赛题思路2 比赛日期和时间3 竞赛信息4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 比赛日期和时间 报名截止时间&#xff1a;2024…

76.网络游戏逆向分析与漏洞攻防-移动系统分析-分析角色移动产生的数据包

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 如果看不懂、不知道现在做的什么&#xff0c;那就跟着做完看效果&#xff0c;代码看不懂是正常的&#xff0c;只要会抄就行&#xff0c;抄着抄着就能懂了 内容…

[开发|安卓] Android Studio 开发环境配置

Android Studio下载 Android Studio下载地址 下载SDK依赖 1.点击左上角菜单 2.选择工具 3.打开SDK管理中心 4.下载项目目标Android版本的SDK 配置安卓虚拟机 1.打开右上角的设备管理 2.选择合适的手机规格 3.下载并选择项目目标Android系统 4.点击完成配置 …

jupyter lab 与jupter notebook 以及anconda环境

jupyter lab 与jupter notebook 以及anconda环境 jupyter lab 与jupter notebook 以及anconda环境方法一之后需要将虚拟环境的包&#xff0c;导入到jupyter lab中方法二 jupyter lab 与jupter notebook 以及anconda环境 #踩坑/深度学习/jupyter&#xff0c;与深度学环境 关于…

python 打包为exe可执行程序

近期因为需要做文字识别&#xff0c;应用ocr 所以每次都需要部署环境&#xff0c;然后打算做成exe&#xff0c;遇到问题做一总结。 pyinstaller -D --hidden-importpaddleocr testflask.py 生成exe paddleocr 和pyinstaller 安装不做说明。 No such file or directory: …

element-plus el-cascader 懒加载实现-省市区街道选择及回显

大概思路&#xff1a; 准备一个接口可以通过父Id,查询到下一级省市区街道的信息&#xff1b;如下方的getRegionListOne确定后端的数据结构&#xff0c;需要在created里边处理数据回显逻辑el-cascader接收的数据格式是[‘’,‘’,‘’];后端的数据格式多为[{provinceId: ‘’, …

Hive Bucketed Tables 分桶表

Hive Bucketed Tables 分桶表 1.分桶表概念 2.分桶规则 3.语法 4.分桶表的创建 5.分桶表的好处

鸿蒙内核源码分析(时间管理篇) | 谁是内核基本时间单位

时间概念太重要了&#xff0c;在鸿蒙内核又是如何管理和使用时间的呢? 时间管理以系统时钟 g_sysClock 为基础&#xff0c;给应用程序提供所有和时间有关的服务。 用户以秒、毫秒为单位计时.操作系统以Tick为单位计时&#xff0c;这个认识很重要. 每秒的tick大小很大程度上决…

set-cookie字段,cookie文件介绍+原理,如何查看cookie文件,在基于http协议服务器的代码实现,cookie存在问题+解决(会话机制)

目录 Set-Cookie 引入 介绍 原理 描述 图解 保存"cookie文件"的方法 内存级 文件级 查看cookie文件 示例 实现 介绍 代码 核心代码 全部代码 示例 cookie存在的问题 介绍 存在的必要性 如何解决 问题梳理 引入 会话机制 -- 解决信息泄漏…

构造照亮世界——快速沃尔什变换 (FWT)

博客园 我的博客 快速沃尔什变换解决的卷积问题 快速沃尔什变换&#xff08;FWT&#xff09;是解决这样一类卷积问题&#xff1a; ci∑ij⊙kajbkc_i\sum_{ij\odot k}a_jb_k ci​ij⊙k∑​aj​bk​其中&#xff0c;⊙\odot⊙ 是位运算的一种。举个例子&#xff0c;给定数列 a,…

【大模型】LLaMA-1 模型介绍

文章目录 一、背景介绍二、模型介绍2.1 模型结构2.2 模型超参数2.3 SwiGLU 三、代码分析3.1 模型结构代码3.2 FairScale库介绍 四、LLaMA家族模型4.1 Alpaca4.2 Vicuna4.3 Koala(考拉)4.4 Baize (白泽)4.5 Luotuo (骆驼&#xff0c;Chinese)4.6 其他 参考资料 LLaMA&#xff08…

pynq7020系列的资源有多少

pynq系列的资源有多少 对比 查找表107&#xff0c;273 39.14 140&#xff0c;537 51.28查找表随机存储器17&#xff0c;457 12.12 19&#xff0c;524 13.56触发器67&#xff0c;278 12.27 81&#xff0c;453 14.95 Block RAMs ( 36 KB ) 264.5 29.00 457 50.11 Table 1: Zynq-…

从简单逻辑到复杂计算:感知机的进化与其在现代深度学习和人工智能中的应用(下)

文章目录 第一章&#xff1a;感知机的局限性1.1 异或门的挑战1.2 线性与非线性问题 第二章&#xff1a;多层感知机2.1 已有门电路的组合2.2 实现异或门 第三章&#xff1a;从与非门到计算机 文章文上下两节 从简单逻辑到复杂计算&#xff1a;感知机的进化与其在现代深度学习和人…

The provided password or token is incorrect or your account

IDEA使用git技巧 【/n】 01 问题出现场景 我的gitlab上个月生成的token到期了,于是今天推上去的时候报了这个错误 The provided password or token is incorrect or your account has 2FA enabled and you must use a personal access token instead of a password. See ht…

Unreal游戏GPU参数详解,游戏性能优化再升级

UWA GOT Online For Unreal GPU模式近期全新发布&#xff0c;方便开发者从渲染和带宽的角度进行GPU分析。同时&#xff0c;此次更新中UWA也增加了丰富的GPU参数&#xff0c;涵盖了GPU SoC和GPU Counter模块。这些新增的参数不仅能够帮助Unreal开发者从宏观层面监控GPU的压力状况…

【busybox记录】【shell指令】paste

目录 内容来源&#xff1a; 【GUN】【paste】指令介绍 【busybox】【paste】指令介绍 【linux】【paste】指令介绍 使用示例&#xff1a; 合并文件的行 - 默认输出&#xff08;默认是行合并&#xff09; 合并文件的行 - 一个文件占一行 合并文件的行 - 使用指定的间隔符…
最新文章