集成学习案例-幸福感预测

集成学习案例一 (幸福感预测)
背景介绍
此案例是一个数据挖掘类型的比赛——幸福感预测的baseline。比赛的数据使用的是官方的《中国综合社会调查(CGSS)》文件中的调查结果中的数据,其共包含有139个维度的特征,包括个体变量(性别、年龄、地域、职业、健康、婚姻与政治面貌等等)、家庭变量(父母、配偶、子女、家庭资本等等)、社会态度(公平、信用、公共服务)等特征。

数据信息
赛题要求使用以上 139 维的特征,使用 8000 余组数据进行对于个人幸福感的预测(预测值为1,2,3,4,5,其中1代表幸福感最低,5代表幸福感最高)。 因为考虑到变量个数较多,部分变量间关系复杂,数据分为完整版和精简版两类。可从精简版入手熟悉赛题后,使用完整版挖掘更多信息。在这里我直接使用了完整版的数据。赛题也给出了index文件中包含每个变量对应的问卷题目,以及变量取值的含义;survey文件中为原版问卷,作为补充以方便理解问题背景。

评价指标
最终的评价指标为均方误差MSE,即:
在这里插入图片描述

import os
import time 
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from datetime import datetime
import matplotlib.pyplot as plt
from sklearn.metrics import roc_auc_score, roc_curve, mean_squared_error,mean_absolute_error, f1_score
import lightgbm as lgb
import xgboost as xgb
from sklearn.ensemble import RandomForestRegressor as rfr
from sklearn.ensemble import ExtraTreesRegressor as etr
from sklearn.linear_model import BayesianRidge as br
from sklearn.ensemble import GradientBoostingRegressor as gbr
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.linear_model import LinearRegression as lr
from sklearn.linear_model import ElasticNet as en
from sklearn.kernel_ridge import KernelRidge as kr
from sklearn.model_selection import  KFold, StratifiedKFold,GroupKFold, RepeatedKFold
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn import preprocessing
import logging
import warnings

warnings.filterwarnings('ignore') #消除warning
#parse_dates将Date列设置为时间类型
#index_col将Date列设置为索引
#latin-1向下兼容ASCII
train=pd.read_csv("D:\caicai_sklearn\others\happyiness_datasets\happiness_train_complete.csv",
                  parse_dates=['survey_time'],encoding='latin-1')

test=pd.read_csv("D:\caicai_sklearn\others\happyiness_datasets\happiness_test_complete.csv",
                  parse_dates=['survey_time'],encoding='latin-1')

train=train[train['happiness']!=-8].reset_index(drop=True)
#二、使用reset_index(drop=True)
#drop=True表示删除原索引,不然会在数据表格中新生成一列’index’数据
train_data_copy=train.copy()
target_col='happiness'
target=train_data_copy[target_col]
del train_data_copy[target_col]#去除目标列
data=pd.concat([train_data_copy,test],axis=0,ignore_index=True)
#当 ignore_index=True 时,表示在合并数据的同时忽略原始数据的索引(index),新生成的合并后的数据会重新生成一个默认的整数索引。
#make feature +5
#csv中有复数值:-1-2-3-8,将他们视为有问题的特征,但是不删去
def getres1(row):
    return len([x for x in row.values if type(x)==int and x<0])
def getres2(row):
    return len([x for x in row.values if type(x)==int and x==-8])

def getres3(row):
    return len([x for x in row.values if type(x)==int and x==-1])

def getres4(row):
    return len([x for x in row.values if type(x)==int and x==-2])

def getres5(row):
    return len([x for x in row.values if type(x)==int and x==-3])
    #检查数据
data['neg1'] = data[data.columns].apply(lambda row:getres1(row),axis=1)
data.loc[data['neg1']>20,'neg1'] = 20  #平滑处理

data['neg2'] = data[data.columns].apply(lambda row:getres2(row),axis=1)
data['neg3'] = data[data.columns].apply(lambda row:getres3(row),axis=1)
data['neg4'] = data[data.columns].apply(lambda row:getres4(row),axis=1)
data['neg5'] = data[data.columns].apply(lambda row:getres5(row),axis=1)
#填充缺失值,在这里我采取的方式是将缺失值补全,使用fillna(value),其中value的数值根据具体的情况来确定。
#例如将大部分缺失信息认为是零,将家庭成员数认为是1,将家庭收入这个特征认为是66365,即所有家庭的收入平均值。
#部分实现代码如下:
#可以根据业务来填充
data['work_status']=data['work_status'].fillna(0)
data['work_yr'] = data['work_yr'].fillna(0)
data['work_manage'] = data['work_manage'].fillna(0)
data['work_type'] = data['work_type'].fillna(0)

data['edu_yr'] = data['edu_yr'].fillna(0)
data['edu_status'] = data['edu_status'].fillna(0)

data['s_work_type'] = data['s_work_type'].fillna(0)
data['s_work_status'] = data['s_work_status'].fillna(0)
data['s_political'] = data['s_political'].fillna(0)
data['s_hukou'] = data['s_hukou'].fillna(0)
data['s_income'] = data['s_income'].fillna(0)
data['s_birth'] = data['s_birth'].fillna(0)
data['s_edu'] = data['s_edu'].fillna(0)
data['s_work_exper'] = data['s_work_exper'].fillna(0)

data['minor_child'] = data['minor_child'].fillna(0)
data['marital_now'] = data['marital_now'].fillna(0)
data['marital_1st'] = data['marital_1st'].fillna(0)
data['social_neighbor']=data['social_neighbor'].fillna(0)
data['social_friend']=data['social_friend'].fillna(0)
data['hukou_loc']=data['hukou_loc'].fillna(1) #最少为1,表示户口
data['family_income']=data['family_income'].fillna(66365) #删除问题值后的平均值

在这里插入图片描述

bins=[0,17,26,34,50,63,100]#人工分好箱子
data['age_bin']=pd.cut(data['age'],bins,labels=[0,1,2,3,4,5])

在这里插入图片描述

‘’'一、column_stack方法的基本原理

column_stack方法的主要作用是将两个或更多的一维或二维数组沿着列方向(即第二个轴)堆叠起来。这种方法在需要将多个数组的数据组合成一个更大的数组时非常有用。不同于hstack方法,column_stack要求输入的数组至少为二维,或者是一维数组但能够升维成二维。如果输入的是一维数组,column_stack会在堆叠前将它们转换为列向量。

二、column_stack方法的参数详解

column_stack方法接受一个元组作为输入,该元组包含要堆叠的数组。这些数组可以是一维的也可以是二维的,但它们的行数必须相同,以便在列方向上堆叠。下面是一个参数详解:

tup:一个元组,包含要堆叠的数组。这些数组可以是一维的也可以是二维的,但它们的第一维度(行数)必须相同。
值得注意的是,column_stack方法在内部实际上是使用concatenate函数来实现的,其等价于np.concatenate((a, b), axis=1),其中a和b是要堆叠的数组。

三、column_stack方法的使用示例’‘’

数据增广
这一步,我们需要进一步分析每一个特征之间的关系,从而进行数据增广。经过思考,这里我添加了如下的特征:第一次结婚年龄、最近结婚年龄、是否再婚、配偶年龄、配偶年龄差、各种收入比(与配偶之间的收入比、十年后预期收入与现在收入之比等等)、收入与住房面积比(其中也包括10年后期望收入等等各种情况)、社会阶级(10年后的社会阶级、14年后的社会阶级等等)、悠闲指数、满意指数、信任指数等等。除此之外,我还考虑了对于同一省、市、县进行了归一化。例如同一省市内的收入的平均值等以及一个个体相对于同省、市、县其他人的各个指标的情况。同时也考虑了对于同龄人之间的相互比较,即在同龄人中的收入情况、健康情况等等。具体的实现代码如下:

#第一次结婚年龄 147
data['marital_1stbir'] = data['marital_1st'] - data['birth'] 
#最近结婚年龄 148
data['marital_nowtbir'] = data['marital_now'] - data['birth'] 
#是否再婚 149
data['mar'] = data['marital_nowtbir'] - data['marital_1stbir']
#配偶年龄 150
data['marital_sbir'] = data['marital_now']-data['s_birth']
#配偶年龄差 151
data['age_'] = data['marital_nowtbir'] - data['marital_sbir'] 

#收入比 151+7 =158
data['income/s_income'] = data['income']/(data['s_income']+1) #同居伴侣
data['income+s_income'] = data['income']+(data['s_income']+1)
data['income/family_income'] = data['income']/(data['family_income']+1)
data['all_income/family_income'] = (data['income']+data['s_income'])/(data['family_income']+1)
data['income/inc_exp'] = data['income']/(data['inc_exp']+1)
data['family_income/m'] = data['family_income']/(data['family_m']+0.01)
data['income/m'] = data['income']/(data['family_m']+0.01)

#收入/面积比 158+4=162
data['income/floor_area'] = data['income']/(data['floor_area']+0.01)
data['all_income/floor_area'] = (data['income']+data['s_income'])/(data['floor_area']+0.01)
data['family_income/floor_area'] = data['family_income']/(data['floor_area']+0.01)
data['floor_area/m'] = data['floor_area']/(data['family_m']+0.01)

#class 162+3=165
data['class_10_diff'] = (data['class_10_after'] - data['class'])
data['class_diff'] = data['class'] - data['class_10_before']
data['class_14_diff'] = data['class'] - data['class_14']
#悠闲指数 166
leisure_fea_lis = ['leisure_'+str(i) for i in range(1,13)]
data['leisure_sum'] = data[leisure_fea_lis].sum(axis=1) #skew
#满意指数 167
public_service_fea_lis = ['public_service_'+str(i) for i in range(1,10)]
data['public_service_sum'] = data[public_service_fea_lis].sum(axis=1) #skew

#信任指数 168
trust_fea_lis = ['trust_'+str(i) for i in range(1,14)]
data['trust_sum'] = data[trust_fea_lis].sum(axis=1) #skew

#province mean 168+13=181
data['province_income_mean'] = data.groupby(['province'])['income'].transform('mean').values
data['province_family_income_mean'] = data.groupby(['province'])['family_income'].transform('mean').values
data['province_equity_mean'] = data.groupby(['province'])['equity'].transform('mean').values
data['province_depression_mean'] = data.groupby(['province'])['depression'].transform('mean').values
data['province_floor_area_mean'] = data.groupby(['province'])['floor_area'].transform('mean').values
data['province_health_mean'] = data.groupby(['province'])['health'].transform('mean').values
data['province_class_10_diff_mean'] = data.groupby(['province'])['class_10_diff'].transform('mean').values
data['province_class_mean'] = data.groupby(['province'])['class'].transform('mean').values
data['province_health_problem_mean'] = data.groupby(['province'])['health_problem'].transform('mean').values
data['province_family_status_mean'] = data.groupby(['province'])['family_status'].transform('mean').values
data['province_leisure_sum_mean'] = data.groupby(['province'])['leisure_sum'].transform('mean').values
data['province_public_service_sum_mean'] = data.groupby(['province'])['public_service_sum'].transform('mean').values
data['province_trust_sum_mean'] = data.groupby(['province'])['trust_sum'].transform('mean').values

#city   mean 181+13=194
data['city_income_mean'] = data.groupby(['city'])['income'].transform('mean').values #按照city分组
data['city_family_income_mean'] = data.groupby(['city'])['family_income'].transform('mean').values
data['city_equity_mean'] = data.groupby(['city'])['equity'].transform('mean').values
data['city_depression_mean'] = data.groupby(['city'])['depression'].transform('mean').values
data['city_floor_area_mean'] = data.groupby(['city'])['floor_area'].transform('mean').values
data['city_health_mean'] = data.groupby(['city'])['health'].transform('mean').values
data['city_class_10_diff_mean'] = data.groupby(['city'])['class_10_diff'].transform('mean').values
data['city_class_mean'] = data.groupby(['city'])['class'].transform('mean').values
data['city_health_problem_mean'] = data.groupby(['city'])['health_problem'].transform('mean').values
data['city_family_status_mean'] = data.groupby(['city'])['family_status'].transform('mean').values
data['city_leisure_sum_mean'] = data.groupby(['city'])['leisure_sum'].transform('mean').values
data['city_public_service_sum_mean'] = data.groupby(['city'])['public_service_sum'].transform('mean').values
data['city_trust_sum_mean'] = data.groupby(['city'])['trust_sum'].transform('mean').values

#county  mean 194 + 13 = 207
data['county_income_mean'] = data.groupby(['county'])['income'].transform('mean').values
data['county_family_income_mean'] = data.groupby(['county'])['family_income'].transform('mean').values
data['county_equity_mean'] = data.groupby(['county'])['equity'].transform('mean').values
data['county_depression_mean'] = data.groupby(['county'])['depression'].transform('mean').values
data['county_floor_area_mean'] = data.groupby(['county'])['floor_area'].transform('mean').values
data['county_health_mean'] = data.groupby(['county'])['health'].transform('mean').values
data['county_class_10_diff_mean'] = data.groupby(['county'])['class_10_diff'].transform('mean').values
data['county_class_mean'] = data.groupby(['county'])['class'].transform('mean').values
data['county_health_problem_mean'] = data.groupby(['county'])['health_problem'].transform('mean').values
data['county_family_status_mean'] = data.groupby(['county'])['family_status'].transform('mean').values
data['county_leisure_sum_mean'] = data.groupby(['county'])['leisure_sum'].transform('mean').values
data['county_public_service_sum_mean'] = data.groupby(['county'])['public_service_sum'].transform('mean').values
data['county_trust_sum_mean'] = data.groupby(['county'])['trust_sum'].transform('mean').values

#ratio 相比同省 207 + 13 =220
data['income/province'] = data['income']/(data['province_income_mean'])                                      
data['family_income/province'] = data['family_income']/(data['province_family_income_mean'])   
data['equity/province'] = data['equity']/(data['province_equity_mean'])       
data['depression/province'] = data['depression']/(data['province_depression_mean'])                                                
data['floor_area/province'] = data['floor_area']/(data['province_floor_area_mean'])
data['health/province'] = data['health']/(data['province_health_mean'])
data['class_10_diff/province'] = data['class_10_diff']/(data['province_class_10_diff_mean'])
data['class/province'] = data['class']/(data['province_class_mean'])
data['health_problem/province'] = data['health_problem']/(data['province_health_problem_mean'])
data['family_status/province'] = data['family_status']/(data['province_family_status_mean'])
data['leisure_sum/province'] = data['leisure_sum']/(data['province_leisure_sum_mean'])
data['public_service_sum/province'] = data['public_service_sum']/(data['province_public_service_sum_mean'])
data['trust_sum/province'] = data['trust_sum']/(data['province_trust_sum_mean']+1)

#ratio 相比同市 220 + 13 =233
data['income/city'] = data['income']/(data['city_income_mean'])                                      
data['family_income/city'] = data['family_income']/(data['city_family_income_mean'])   
data['equity/city'] = data['equity']/(data['city_equity_mean'])       
data['depression/city'] = data['depression']/(data['city_depression_mean'])                                                
data['floor_area/city'] = data['floor_area']/(data['city_floor_area_mean'])
data['health/city'] = data['health']/(data['city_health_mean'])
data['class_10_diff/city'] = data['class_10_diff']/(data['city_class_10_diff_mean'])
data['class/city'] = data['class']/(data['city_class_mean'])
data['health_problem/city'] = data['health_problem']/(data['city_health_problem_mean'])
data['family_status/city'] = data['family_status']/(data['city_family_status_mean'])
data['leisure_sum/city'] = data['leisure_sum']/(data['city_leisure_sum_mean'])
data['public_service_sum/city'] = data['public_service_sum']/(data['city_public_service_sum_mean'])
data['trust_sum/city'] = data['trust_sum']/(data['city_trust_sum_mean'])

#ratio 相比同个地区 233 + 13 =246
data['income/county'] = data['income']/(data['county_income_mean'])                                      
data['family_income/county'] = data['family_income']/(data['county_family_income_mean'])   
data['equity/county'] = data['equity']/(data['county_equity_mean'])       
data['depression/county'] = data['depression']/(data['county_depression_mean'])                                                
data['floor_area/county'] = data['floor_area']/(data['county_floor_area_mean'])
data['health/county'] = data['health']/(data['county_health_mean'])
data['class_10_diff/county'] = data['class_10_diff']/(data['county_class_10_diff_mean'])
data['class/county'] = data['class']/(data['county_class_mean'])
data['health_problem/county'] = data['health_problem']/(data['county_health_problem_mean'])
data['family_status/county'] = data['family_status']/(data['county_family_status_mean'])
data['leisure_sum/county'] = data['leisure_sum']/(data['county_leisure_sum_mean'])
data['public_service_sum/county'] = data['public_service_sum']/(data['county_public_service_sum_mean'])
data['trust_sum/county'] = data['trust_sum']/(data['county_trust_sum_mean'])

#age   mean 246+ 13 =259
data['age_income_mean'] = data.groupby(['age'])['income'].transform('mean').values
data['age_family_income_mean'] = data.groupby(['age'])['family_income'].transform('mean').values
data['age_equity_mean'] = data.groupby(['age'])['equity'].transform('mean').values
data['age_depression_mean'] = data.groupby(['age'])['depression'].transform('mean').values
data['age_floor_area_mean'] = data.groupby(['age'])['floor_area'].transform('mean').values
data['age_health_mean'] = data.groupby(['age'])['health'].transform('mean').values
data['age_class_10_diff_mean'] = data.groupby(['age'])['class_10_diff'].transform('mean').values
data['age_class_mean'] = data.groupby(['age'])['class'].transform('mean').values
data['age_health_problem_mean'] = data.groupby(['age'])['health_problem'].transform('mean').values
data['age_family_status_mean'] = data.groupby(['age'])['family_status'].transform('mean').values
data['age_leisure_sum_mean'] = data.groupby(['age'])['leisure_sum'].transform('mean').values
data['age_public_service_sum_mean'] = data.groupby(['age'])['public_service_sum'].transform('mean').values
data['age_trust_sum_mean'] = data.groupby(['age'])['trust_sum'].transform('mean').values

# 和同龄人相比259 + 13 =272
data['income/age'] = data['income']/(data['age_income_mean'])                                      
data['family_income/age'] = data['family_income']/(data['age_family_income_mean'])   
data['equity/age'] = data['equity']/(data['age_equity_mean'])       
data['depression/age'] = data['depression']/(data['age_depression_mean'])                                                
data['floor_area/age'] = data['floor_area']/(data['age_floor_area_mean'])
data['health/age'] = data['health']/(data['age_health_mean'])
data['class_10_diff/age'] = data['class_10_diff']/(data['age_class_10_diff_mean'])
data['class/age'] = data['class']/(data['age_class_mean'])
data['health_problem/age'] = data['health_problem']/(data['age_health_problem_mean'])
data['family_status/age'] = data['family_status']/(data['age_family_status_mean'])
data['leisure_sum/age'] = data['leisure_sum']/(data['age_leisure_sum_mean'])
data['public_service_sum/age'] = data['public_service_sum']/(data['age_public_service_sum_mean'])
data['trust_sum/age'] = data['trust_sum']/(data['age_trust_sum_mean'])
cat_fea = ['survey_type','gender','nationality','edu_status','political','hukou','hukou_loc','work_exper','work_status','work_type',
           'work_manage','marital','s_political','s_hukou','s_work_exper','s_work_status','s_work_type','f_political','f_work_14',
           'm_political','m_work_14'] #已经是01的值不需要onehot
noc_fea = [clo for clo in use_feature if clo not in cat_fea]

onehot_data = data[cat_fea].values
enc = preprocessing.OneHotEncoder(categories = 'auto')
oh_data=enc.fit_transform(onehot_data).toarray()
oh_data.shape #变为onehot编码格式

X_train_oh = oh_data[:train_shape,:]
X_test_oh = oh_data[train_shape:,:]
X_train_oh.shape #其中的训练集

X_train_383 = np.column_stack([data[:train_shape][noc_fea].values,X_train_oh])#先是noc,再是cat_fea
X_test_383 = np.column_stack([data[train_shape:][noc_fea].values,X_test_oh])
X_train_383.shape

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/605504.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

特定消谐技术:SHEPWM调制方法

简介 特定消谐技术是通过计算PWM波的开关时刻&#xff0c;消除特定的低阶谐波。其基本理论是恰当地控制逆变器脉宽调制电压的波形&#xff0c;通过脉宽平均法把逆变器输出的方波电压转换成等效的正弦波&#xff0c;以消除某些特定的谐波。本文对特定谐波消除方法的基本原理进行…

新书速览|Rust编程与项目实战

掌握Rust编程基础和开发方法&#xff0c;实战网络编程、图像和游戏开发、数据分析项目 本书内容 Rust是一门系统编程语言&#xff0c;专注于安全&#xff0c;尤其是并发安全&#xff0c;它也是支持函数式、命令式以及泛型等编程范式的多范式语言。标准Rust在语法和性能上和标准…

前端项目加载离线的百度地图,利用工具进行切指定区域的地图影像,自定义图层getTilesUrl

百度地图在开发中我们经常使用&#xff0c;但是有些项目是需要在内网进行&#xff0c;这时候我们不得不考虑项目中一些功能需要请求外网静态资源&#xff0c;比如百度地图。只有把包下载到本地&#xff0c;才能让静态资源文件的正常的访问。 目录 获取百度地图开发秘钥 引入在…

OpenSPG docker 安装教程

文章目录 前言自述 一、OpenSPG1.介绍 二、安装步骤1.安装服务端2.客户端部署 前言 自述 我最近是想结合chatglm3-6b和知识图谱做一个垂直领域的技术规范的问答系统&#xff0c;过程中也遇到了很多困难&#xff0c;在模型微调上&#xff0c;在数据集收集整理上&#xff0c;在知…

Golang | Leetcode Golang题解之第69题x的平方根

题目&#xff1a; 题解&#xff1a; func mySqrt(x int) int {if x 0 {return 0}C, x0 : float64(x), float64(x)for {xi : 0.5 * (x0 C/x0)if math.Abs(x0 - xi) < 1e-7 {break}x0 xi}return int(x0) }

大数据之Hue中运行Sqoop常见的问题分析

Hue提供执行Sqoop命令的功能。 使用方法 与在终端执行Sqoop命令不同&#xff0c;在Hue中执行Sqoop命令&#xff0c;应该直接使用Sqoop的一级子命令。Sqoop在终端和Hue执行的区别 在终端执行 sqoop import \ --connect jdbc:oracle:thin:10.100.144.152:1521/ORACLE_DB \ --use…

Web API之DOM

DOM 一.认识DOM二.获取元素三.事件基础四.操作元素(1).改变元素内容(2).修改元素属性(str、herf、id、alt、title&#xff09;(3).修改表单属性(4).修改样式属性操作(5).小结 五.一些思想(1).排他思想(2).自定义属性的操作 六.节点操作1.认识2.节点层级关系3.创建和添加、删除、…

电子硬件设计-Xilinx FPGA/SoC前期功耗评估方法(1)

目录 1. 简介 2. 使用方法 2.1 设计输入 2.2 查看结果 3. 额外说明 4. 总结 1. 简介 XPE (Xilinx Power Estimator, 功耗估算器) 电子表格是一种功耗估算工具&#xff0c;用于项目的预设计和预实现阶段。 该工具可以帮助工程师进行架构评估、器件选择、合适的电源组件以…

SpringCloudAlibaba:4.3云原生网关higress的JWT 认证

概述 简介 JWT是一种用于双方之间传递安全信息的简洁的、URL安全的声明规范。 定义了一种简洁的&#xff0c;自包含的方法用于通信双方之间以Json对象的形式安全的传递信息&#xff0c;特别适用于分布式站点的单点登录&#xff08;SSO&#xff09;场景 session认证的缺点 1.安…

liunx命令行 带颜色

for i in {1..49}; do echo -e "\033[;${i}m 这是${i}的效果 oldboy\E[0M"; done

如何彻底将CAD或者Cadence卸载干净

最近因为升级软件需要先彻底删除这两个软件&#xff0c;发现无论如何都不能卸载干净&#xff0c;于是乎找到这样一个软件帮助卸载或查找剩余的软件残留&#xff1a; 官网&#xff1a;https://geekuninstaller.com 支持软件和 UWP 应用的卸载&#xff0c;查看软件注册表和安装目…

防爆地下水位自动监测设备

TH-DSW1随着科技的不断进步&#xff0c;地下水资源监测技术也在日新月异。防爆地下水位自动监测设备作为一种先进的水文监测工具&#xff0c;其应用不仅提高了水资源管理的效率&#xff0c;还为保障水资源安全提供了有力支撑。 一、防爆地下水位自动监测设备的优势 防爆地下水…

跨协议通讯无缝对接:Modbus-BACnet楼宇智能转换器深度解析

在现代化的建筑群里&#xff0c;智能楼宇管理系统如同神经系统&#xff0c;协调着各设备的运行。某大型商业综合体&#xff0c;集购物中心、办公区、酒店于一体&#xff0c;面对着来自不同供应商的设备&#xff0c;如何实现统一管理和高效通讯成了首要挑战。特别是其内部既有采…

UE5 FARFilter筛选器使用方法

UE5 查找资源时可以用FARFilter进行筛选&#xff0c;之前可以用ClassNames进行筛选&#xff0c;但是5.1之后就弃用这个属性改成ClassPaths属性 构造一个FTopLevelAssetPath对象需要两个FName参数&#xff0c;但是没找到应该传什么 查找官方文档&#xff0c;明显是错误的&#x…

基于SSM的“小型企业人事管理系统”的设计与实现(源码+数据库+文档+PPT)

基于SSM的“小型企业人事管理系统”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SSM 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 登录界面 个人信息页面 用户打卡页面 扣…

Docker 入门篇(七)-- Docker 安装 nginx

引言 Docker 系列文章 Docker 入门篇&#xff08;一&#xff09;-- 简介与安装教程&#xff08;Windows和Linux&#xff09; Docker官方镜像 https://hub.docker.com/ 一、安装 nginx 1.安装环境 Linux 环境&#xff1a;centos 7docker 版本&#xff1a;26.1.0nginx版本&…

CTF-密码学基础

概述 密码学(Cryptolopy)&#xff1a;是研究信息系统安全保密的科学 密码学研究的两个方向&#xff1a; 密码编码学(Cryptography)&#xff1a;主要研究对信息进行编码&#xff0c;实现对信息的隐蔽密码分析学(Cryptanalytics)&#xff1a;主要研究加密信息的破译或消息的伪造…

Baidu Comate——让软件研发更高效、更智能

个人名片&#xff1a; &#x1f60a;作者简介&#xff1a;一名大二在校生 &#x1f921; 个人主页&#xff1a;坠入暮云间x &#x1f43c;座右铭&#xff1a;给自己一个梦想&#xff0c;给世界一个惊喜。 &#x1f385;**学习目标: 坚持每一次的学习打卡 文章目录 一、Baidu Co…

Spring 事务及事务传播机制(1)

目录 事务 回顾: 什么是事务 为什么需要事务 事务的操作 Spring事务的实现 Spring编程式事务(简单了解即可, 问就是基本不用) 观察事务提交 观察事务回滚 Spring声明式事务 Transactional Transactional作用 事务 回顾: 什么是事务 定义: 事务是指逻辑上的一组操作, 构…

最大数字——蓝桥杯十三届2022国赛大学B组真题

问题分析 这道题属于贪心加回溯。所有操作如果能使得高位的数字变大必定优先用在高位&#xff0c;因为对高位的影响永远大于对低位的影响。然后我们再来分析一下&#xff0c;如何使用这两种操作&#xff1f;对于加操作&#xff0c;如果能使这一位的数字加到9则变成9&#xff0…
最新文章