Android MediaCodec 简明教程(七):使用 MediaCodec 解码到 OES 纹理上

系列文章目录

  1. Android MediaCodec 简明教程(一):使用 MediaCodecList 查询 Codec 信息,并创建 MediaCodec 编解码器
  2. Android MediaCodec 简明教程(二):使用 MediaCodecInfo.CodecCapabilities 查询 Codec 支持的宽高,颜色空间等能力
  3. Android MediaCodec 简明教程(三):详解如何在同步与异步模式下,使用MediaCodec将视频解码到ByteBuffers,并在ImageView上展示
  4. Android MediaCodec 简明教程(四):使用 MediaCodec 将视频解码到 Surface,并使用 SurfaceView 播放视频
  5. Android MediaCodec 简明教程(五):使用 MediaCodec 编码 ByteBuffer 数据,并保存为 MP4 文件
  6. Android MediaCodec 简明教程(六):使用 EGL 和 OpenGL 绘制图像到 Surface 上,并通过 MediaCodec 编码 Surface 数据,并保存到 MP4 文件

前言

在这个系列的第七章中,我们将深入探讨一些更复杂的知识点:如何将视频帧解码到OES纹理上。在前几章中,我们已经学习了如何查询MediaCodec信息,以及如何使用MediaCodec进行解码和编码。

首先,我们需要理解为什么我们需要将视频帧解码到纹理上。Android MediaCodec 简明教程(四):使用 MediaCodec 将视频解码到 Surface,并使用 SurfaceView 播放视频,我们直接将视频帧解码到SurfaceView上进行播放,这种方法并没有对视频帧进行任何处理。但是,如果我们想要给视频添加滤镜,这种方法就无法实现。

那么,我们应该如何操作呢?有两种可能的解决方案:

  1. 我们可以不再将视频帧解码到 Surface 上,而是解码为ByteBuffers。然后,我们可以对ByteBuffers中的图片像素数据进行处理,最后再将这些数据显示到窗口上。
  2. 我们可以将视频帧解码到纹理上,然后使用OpenGL对纹理内容进行变换,并将其绘制到窗口上。

虽然第一种方法是可行的,但是其性能会非常差。因为大部分任务都是在CPU上完成的,所以处理速度会非常慢,无法满足正常视频播放的需求。因此,我们应该采用第二种方法。

为了降低每一章节的难度,将第二种方法拆为两个章节,本章将说明如何解码到 OES 纹理上,下一章则说明如何添加滤镜。本章代码你可以在 LearnMediaCodec-DecodeToTextureOESActivity 中找到。

Surface、SurfaceTexture 以及 OES 纹理

MediaCodec 仅接受 Surface 作为解码的输出目标。那么问题来了,我们如何将纹理与Surface进行关联呢?幸运的是,Android为我们提供了 SurfaceTexture 和 OES 纹理这两个工具。关于OES纹理和SurfaceTexture的详细信息,你可以参考相关资料,这里就不再详细展开了。

  • SurfaceTexture
  • 谈一谈Android上的SurfaceTexture
  • Android Opengl OES 纹理渲染到 GL_TEXTURE_2D

下面的代码显示了如何更具一个 OES 纹理来创建 Surface

val numTexId = 1
val textureHandles = IntArray(numTexId)
GLES20.glGenTextures(numTexId, textureHandles, 0)
val surfaceTexture = SurfaceTexture(textureHandles[0])
val surface = Surface(surfaceTexture)

在这里插入图片描述
创建好 Surface 后,我们用这个 Surface 来构建 codec 即可:

codec.configure(videoFormat, surface, null, 0)

如此一来,MediaCodec 就能够将视频帧解码至 OES 纹理上了。

建立 EGL 环境

注意,我们调用了以 GLES20 开头的 OpenGL ES API,你需要保证调用 OpenGL API 前当前线程的 EGL 环境是正确的。这部分比较难理解,但目前你只需要记住就行了。
在代码中,我们构建了一个 EGLHelper 的类来帮助我们正确的建立 EGL 环境,代码如下:

class EGLHelper {
    private val TAG = "EGLHelper"

    private var mEGLDisplay = EGL14.EGL_NO_DISPLAY
    private var mEGLSurface = EGL14.EGL_NO_SURFACE
    private var mEGLContext: EGLContext? = null

    fun setupEGL(width: Int, height: Int) {
        mEGLDisplay = EGL14.eglGetDisplay(EGL14.EGL_DEFAULT_DISPLAY)
        if (mEGLDisplay === EGL14.EGL_NO_DISPLAY) {
            getError()
            throw java.lang.RuntimeException("unable to get EGL14 display")
        }

        val version = IntArray(2)
        if (!EGL14.eglInitialize(mEGLDisplay, version, 0, version, 1)) {
            mEGLDisplay = null
            throw java.lang.RuntimeException("unable to initialize EGL14")
        }

        // Configure EGL for pbuffer and OpenGL ES 2.0.  We want enough RGB bits
        // to be able to tell if the frame is reasonable.
        val attribList = intArrayOf(
            EGL14.EGL_RED_SIZE, 8,
            EGL14.EGL_GREEN_SIZE, 8,
            EGL14.EGL_BLUE_SIZE, 8,
            EGL14.EGL_RENDERABLE_TYPE, EGL14.EGL_OPENGL_ES2_BIT,
            EGLExt.EGL_RECORDABLE_ANDROID, 1,
            EGL14.EGL_NONE
        )

        val configs = arrayOfNulls<EGLConfig>(1)
        val numConfigs = IntArray(1)
        if (!EGL14.eglChooseConfig(
                mEGLDisplay,
                attribList,
                0,
                configs,
                0,
                configs.size,
                numConfigs,
                0
            )
        ) {
            throw RuntimeException("eglChooseConfig failed")
        }

        // 创建 EGLContext
        val contextAttrs = intArrayOf(
            EGL14.EGL_CONTEXT_CLIENT_VERSION, 2,
            EGL14.EGL_NONE
        )
        mEGLContext =
            EGL14.eglCreateContext(mEGLDisplay, configs[0], EGL14.EGL_NO_CONTEXT, contextAttrs, 0)
        if (mEGLContext == EGL14.EGL_NO_CONTEXT) {
            getError()
            throw RuntimeException("eglCreateContext failed")
        }

        // 创建 EGLSurface
        val surfaceAttrib = intArrayOf(
            EGL14.EGL_WIDTH, width,
            EGL14.EGL_HEIGHT, height,
            EGL14.EGL_NONE
        )
        mEGLSurface = EGL14.eglCreatePbufferSurface(mEGLDisplay, configs[0], surfaceAttrib, 0)
        if (mEGLSurface == EGL14.EGL_NO_SURFACE) {
            getError()
            throw RuntimeException("eglCreateWindowSurface failed")
        }
    }

    fun makeCurrent() {
        if (!EGL14.eglMakeCurrent(mEGLDisplay, mEGLSurface, mEGLSurface, mEGLContext)) {
            getError()
            throw RuntimeException("eglMakeCurrent failed")
        }
    }

    fun releaseEGL() {
        if (!EGL14.eglMakeCurrent(
                mEGLDisplay,
                EGL14.EGL_NO_SURFACE,
                EGL14.EGL_NO_SURFACE,
                EGL14.EGL_NO_CONTEXT
            )
        ) {
            throw java.lang.RuntimeException("eglMakeCurrent failed")
        }
    }

    fun release() {
        if (EGL14.eglGetCurrentContext() == mEGLContext) {
            // Clear the current context and surface to ensure they are discarded immediately.
            EGL14.eglMakeCurrent(
                mEGLDisplay, EGL14.EGL_NO_SURFACE, EGL14.EGL_NO_SURFACE,
                EGL14.EGL_NO_CONTEXT
            )
        }
        EGL14.eglDestroySurface(mEGLDisplay, mEGLSurface)
        EGL14.eglDestroyContext(mEGLDisplay, mEGLContext)
        EGL14.eglTerminate(mEGLDisplay)

        mEGLDisplay = null
        mEGLContext = null
        mEGLSurface = null
    }
}

上面代码看起来确实有够复杂的,但我并不想一一进行解释,关于 Android EGL 内容你可以参考 Android OpenGL 开发—EGL 的使用 。

  1. setupEGL 中调用 EGL14.eglCreatePbufferSurface 创建了一个 EGLSurface,width 和 height 作为属性一同作为输入。
  2. makeCurrent 函数将 GL Context 切换到当前线程中,而 releaseEGL 解绑当前的 GL Context。再重申一遍,在调用任何 OpenGL API 前应该确保当前线程中有 GL Context。
  3. release 释放 EGL 相关的资源,在退出时应该调用

Show me the code

基础知识已经铺垫完毕,接下来看具体的代码,并对代码做详细的解释

private fun decodeToSurfaceAsync() {
    val width = 720
    val height = 1280
    mEGLHelper.setupEGL(width, height)
    mEGLHelper.makeCurrent()
    count = 0
    // allocate texture id
    val numTexId = 1
    val textureHandles = IntArray(numTexId)
    GLES20.glGenTextures(numTexId, textureHandles, 0)
    checkGlError("glGenTextures")
    // bind texture id to oes and config it
    GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, textureHandles[0])
    // ....
    
    checkGlError("init oes texture")
    // create SurfaceTexture with texture id
    mSurfaceTexture = SurfaceTexture(textureHandles[0])
    thread = HandlerThread("FrameHandlerThread")
    thread!!.start()
    //mSurfaceTexture!!.setOnFrameAvailableListener(this)
    mSurfaceTexture!!.setOnFrameAvailableListener({
        synchronized(lock) {
            // New frame available before the last frame was proces
            if (frameAvailable)
                Log.d(TAG, "Frame available before the last frame w
            frameAvailable = true
            lock.notifyAll()
        }
    }, Handler(thread!!.looper))
    // create Surface With SurfaceTexture
    mOutputSurface = Surface(mSurfaceTexture)
    // create and configure media extractor
    val mediaExtractor = MediaExtractor()
    resources.openRawResourceFd(R.raw.h264_720p).use {
        mediaExtractor.setDataSource(it)
    }
    val videoTrackIndex = 0
    mediaExtractor.selectTrack(videoTrackIndex)
    val videoFormat = mediaExtractor.getTrackFormat(videoTrackIndex
    // create and configure media codec
    val codecList = MediaCodecList(MediaCodecList.REGULAR_CODECS)
    val codecName = codecList.findDecoderForFormat(videoFormat)
    val codec = MediaCodec.createByCodecName(codecName)
    val maxInputSize = videoFormat.getInteger(MediaFormat.KEY_MAX_I
    val inputBuffer = ByteBuffer.allocate(maxInputSize)
    val bufferInfo = MediaCodec.BufferInfo()
    val inputEnd = AtomicBoolean(false)
    val outputEnd = AtomicBoolean(false)
    // set codec callback in async mode
    codec.setCallback(object : MediaCodec.Callback() {
        override fun onInputBufferAvailable(codec: MediaCodec, inpu
            Log.d(TAG, "onInputBufferAvailable")
            val isExtractorReadEnd =
                getInputBufferFromExtractor(mediaExtractor, inputBu
            if (isExtractorReadEnd) {
                inputEnd.set(true)
                codec.queueInputBuffer(
                    inputBufferId, 0, 0, 0,
                    MediaCodec.BUFFER_FLAG_END_OF_STREAM
                )
            } else {
                val codecInputBuffer = codec.getInputBuffer(inputBu
                codecInputBuffer!!.put(inputBuffer)
                codec.queueInputBuffer(
                    inputBufferId,
                    0,
                    bufferInfo.size,
                    bufferInfo.presentationTimeUs,
                    bufferInfo.flags
                )
                mediaExtractor.advance()
            }
        }
        override fun onOutputBufferAvailable(
            codec: MediaCodec,
            outputBufferId: Int,
            info: MediaCodec.BufferInfo
        ) {
            if (info.flags and MediaCodec.BUFFER_FLAG_END_OF_STREAM
                outputEnd.set(true)
            }
            if (info.size > 0) {
                Log.i(TAG, "onOutputBufferAvailable")
                codec.releaseOutputBuffer(outputBufferId, true)
                waitTillFrameAvailable()
                mEGLHelper.makeCurrent()
                mSurfaceTexture!!.updateTexImage()
                saveTextureToImage(textureHandles[0], width, height
                count++
            }
        }
        override fun onError(codec: MediaCodec, e: MediaCodec.Codec
            e.printStackTrace()
        }
        override fun onOutputFormatChanged(codec: MediaCodec, forma
            Log.e(TAG, "onOutputFormatChanged")
        }
    })
    // configure with surface
    codec.configure(videoFormat, mOutputSurface, null, 0)
    // release EGL context in this thread
    mEGLHelper.releaseEGL()
    // start decoding
    codec.start()
    // wait for processing to complete
    while (!outputEnd.get() && count < 10) {
        Log.i(TAG, "count: $count")
        Thread.sleep(10)
    }
    mediaExtractor.release()
    codec.stop()
    codec.release()
}

代码大致说明:

  1. mEGLHelper.setupEGL(width, height) 建立 EGL 环境,接着使用 makeCurrent 方法切换当前线程的 GL Context,因为我们要开始调用 GL API 了
  2. GLES20.glGenTextures 它生成一个OpenGL纹理;GLES20.glBindTexture 将其绑定到OES(OpenGL ES)纹理上,然后设置纹理的各种参数。
  3. 创建一个SurfaceTexture,它可以从图像流(如摄像头)接收图像帧,并将其转换为OpenGL ES可用的纹理。
  4. 创建一个HandlerThread,这是一个带有Looper的线程,可以处理消息队列中的任务。
  5. 设置SurfaceTexture的帧可用监听器,当有新的帧可用时,它会被调用。
  6. 创建一个Surface,它是一个抽象的绘图表面,可以从SurfaceTexture接收图像帧。
  7. 创建并配置MediaExtractor,它可以从媒体文件中提取轨道和元数据。
  8. 创建并配置MediaCodec,它是一个用于编解码音频和视频数据的类。
  9. 设置MediaCodec的回调,这些回调在输入缓冲区可用、输出缓冲区可用、发生错误和输出格式改变时被调用。
  10. 配置MediaCodec,使其使用Surface作为输出表面。
  11. 启动MediaCodec,开始解码过程。
  12. 在解码过程结束后,释放资源。

现在讨论几个细节的问题。首先让我们看 onOutputBufferAvailable 中的逻辑

if (info.size > 0) {
    Log.i(TAG, "onOutputBufferAvailable")
    codec.releaseOutputBuffer(outputBufferId, true)
    waitTillFrameAvailable()
    mEGLHelper.makeCurrent()
    mSurfaceTexture!!.updateTexImage()
    saveTextureToImage(textureHandles[0], width, height, count)
    count++
}

调用 releaseOutputBuffer 后,MediaCodec 将渲染好这一帧,然后通过 onFrameAvailable 回调告知使用者帧已经画好了,可以被消费了。因此我们在这里调用了 waitTillFrameAvailable 来等待回调函数被调用。
当我们等到了一帧后,makeCurrent 切换 GL Context 到当前线程,然后调用 updateTexImage 将视频帧更新到 OES 纹理上。注意,调用updateTexImage 前必须得用 makeCurrent 绑定 GL Context。接着,我们将 OES 纹理上的内容保存到了本地,以便验证效果。

第二个问题,为什么要额外创建一个 HandlerThread 用来处理 setOnFrameAvailableListener 回调事件?如果不这么进行设置,在当前这个 case 下是会卡死的,我猜测是因为 waitTillFrameAvailable 阻塞了 MediaCodec 的回调线程,而 MediaCodec 也用这个线程来执行 onFrameAvailable,所以导致卡死。

总结

本文介绍了如何使用 MediaCodec 解码视频帧到 OES 纹理上,对 OES 纹理、SurfaceTexture 等概念做了介绍和说明。本文所有代码在 LearnMediaCodec-DecodeToTextureOESActivity

参考

  • SurfaceTexture
  • 谈一谈Android上的SurfaceTexture
  • Android Opengl OES 纹理渲染到 GL_TEXTURE_2D

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/608108.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】-Linux用户和权限[3]

一、认知root用户 1、root用户&#xff08;超级管理员&#xff09; 无论是Windows、MacOS、Linux均采用多用户的管理模式进行权限管理。 在Linux系统中&#xff0c;拥有最大权限的账户为&#xff1a;root&#xff08;超级管理员&#xff09; root用户拥有最大的系统操作权限…

python 和 MATLAB 都能绘制的母亲节花束!!

hey 母亲节快到了&#xff0c;教大家用python和MATLAB两种语言绘制花束~这段代码是我七夕节发的&#xff0c;我对代码进行了简化&#xff0c;同时自己整了个python版本 MATLAB 版本代码 function roseBouquet_M() % author : slandarer% 生成花朵数据 [xr,tr]meshgrid((0:24).…

我们的小程序每天早上都白屏,真相是。。。

大家好&#xff0c;我是程序员鱼皮。最近我们在内测一款面试刷题小程序&#xff0c;没错&#xff0c;就是之前倒下的 “面试鸭”&#xff01; 在我们的内测交流群中&#xff0c;每天早上都会有同学反馈&#xff1a;打开小程序空白&#xff0c;没任何内容且登录不上。 然后过了…

感知机简介

感知机简介 导语感知机简单逻辑电路实现权重和配置与/或/与非与门实现与非门实现或门实现 线/非线性单/多层感知机异或 总结参考文献 导语 学习感知机有助于更好的理解深度学习的神经元、权重等概念&#xff0c;感知机的结构和概念很简单&#xff0c;只要学过基本线性代数、数…

Web 安全基础理论

Web 安全基础理论 培训、环境、资料、考证 公众号&#xff1a;Geek极安云科 网络安全群&#xff1a;624032112 网络系统管理群&#xff1a;223627079 网络建设与运维群&#xff1a;870959784 移动应用开发群&#xff1a;548238632 短视频制作群&#xff1a; 744125867极安云…

Star-CCM+通过将所有部件创建一个区域的方式分配至区域后子区域的分离,子区域材料属性的赋值,以及物理连续体的创建方法介绍

前言 上次介绍了将零部件分配至区域的方法与各个方法之间的区别&#xff0c;本文将继续上次的讲解&#xff0c;将其中的“将所有部件分配至一个区域”的应用进行补充。 如下图所示&#xff0c;按照将所有部件创建一个区域的方式分配至区域后&#xff0c;在区域下就会有一个区域…

Marin说PCB之如何快速打印输出整板的丝印位号图?

当小编我辛辛苦苦加班加点的把手上的板子做到投板评审状态的时候&#xff0c;坐在我旁边的日本同事龟田小郎君说让我把板子上的丝印也要调一下&#xff0c;我当时就急了&#xff0c;这么大的板子&#xff0c;将近1W多PIN 了都&#xff0c;光调丝印都要老半天啊&#xff0c;而且…

【ytb数据采集器】按关键词批量爬取视频数据,界面软件更适合文科生!

一、背景介绍 1.1 爬取目标 用Python独立开发的爬虫工具&#xff0c;作用是&#xff1a;通过搜索关键词采集油管的搜索结果&#xff0c;包含14个关键字段&#xff1a;关键词,页码,视频标题,视频id,视频链接,发布时间,视频时长,频道名称,频道id,频道链接,播放数,点赞数,评论数…

MATLAB 点云随机赋色 (68)

MATLAB 点云随机赋色 (68) 一、算法介绍二、算法介绍1.代码2.结果三、数据链接一、算法介绍 读取的点云本身带有颜色信息,有时我们需要为每个点随机赋予一种颜色,下面是具体效果和实现代码,以及使用的数据: 二、算法介绍 1.代码 代码如下(示例): % 读取点云文件 f…

linux中进程相关概念(一)

什么是程序&#xff0c;什么是进程&#xff0c;有什么区别&#xff1f; 程序是静态的概念&#xff0c;当我们使用gcc xxx.c -o pro进行编译时&#xff0c;产生的pro文件&#xff0c;就是一个程序。 进程是程序的一次运行活动&#xff0c;通俗点就是说程序跑起来了就是进程。 …

TypeScript学习日志-第二十一天(声明文件d.ts)

声明文件d.ts 在使用 Typescript 并使用第三方库 的时候 我们会发现会有很多的提示或补全&#xff0c;这都是声明文件起的作用&#xff0c;但是有写冷门的第三方库是没有声明文件的&#xff0c;这时候引用就会报错&#xff0c;我们就使用 express 库作为例子来展示一下&#x…

马蹄集oj赛(双周赛第二十六次)

目录 斐波那契数列的组合 三国杀 数列分段 小码哥的跳棋游戏新编 能量供应 小码哥爱数字 最小串 小船过河 摘果子 泼墨淋漓 很重的枪 小码哥的布阵指挥 斐波那契数列的组合 #include<bits/stdc.h> using namespace std;// 斐波那契数列 1 1 2 3 5 8 13 21 34…

pytorch加载模型出现错误

大概的错误长下面这样&#xff1a; 问题出现的原因&#xff1a; ​很明显&#xff0c;我就是犯了第一种错误。 网上的修改方法&#xff1a; 我觉得按道理哈&#xff0c;确实&#xff0c;蓝色部分应该是可以把问题解决了的​。​但是我没有解决&#xff0c;因为我犯了另外一个错…

[Linux]如何在Ubuntu 22.04系統安裝Node-red?

Node-red是一個建立在Node.js上的視覺化程式設計工具&#xff0c;其常見的應用情境為建置或轉換各項硬體之間的通信協定的物聯網或工聯網場域&#xff0c;其可藉由設置來安裝第三方應用模組來建置多樣的通信協定節點&#xff0c;包含modbus in/out, mqtt in/out, websocket in/…

Mac YOLO V9推理测试

环境&#xff1a; Mac M1 (MacOS Sonoma 14.3.1) Python 3.11PyTorch 2.1.2 一、准备工作 工程及模型下载&#xff1a;​​​​​​​https://github.com/WongKinYiu/yolov9 git clone https://github.com/WongKinYiu/yolov9.git 克隆后安装相关依赖&#xff08;没啥依赖好装…

全网最详细教学如何部署JVS-无忧企业文档

无忧企业文档项目直达地址 项目的简单介绍 JVS是面向软件开发团队可以快速实现应用的基础开发框架&#xff0c;采用微服务分布式框架&#xff0c;提供丰富的基础功能&#xff0c;集成众多业务引擎&#xff0c;它灵活性强&#xff0c;界面化配置对开发者友好&#xff0c;底层容…

2024年软件测试最全jmeter做接口压力测试_jmeter接口性能测试_jmeter压测接口(3),【大牛疯狂教学

既有适合小白学习的零基础资料&#xff0c;也有适合3年以上经验的小伙伴深入学习提升的进阶课程&#xff0c;涵盖了95%以上软件测试知识点&#xff0c;真正体系化&#xff01; 由于文件比较多&#xff0c;这里只是将部分目录截图出来&#xff0c;全套包含大厂面经、学习笔记、…

日志打印传值 传引用 右值引用性能测试(Linux/QNX)

结论 Linux平台和qnx平台优化后传值性能都是比传引用的差&#xff0c;也比传右值的差&#xff0c;因此传参时有必要传递引用。 测试代码 #include <cstdint> #include <ctime> #include <string>#ifdef __linux__#define ITERATIONS 10000000 #else#defin…

Windows命令行一键安装、配置WSL的方法

本文介绍在Windows电脑中&#xff0c;通过命令行的方式&#xff0c;快速、方便安装适用于Linux的Windows子系统&#xff08;Windows Subsystem for Linux&#xff0c;WSL&#xff09;的方法。 WSL是由微软开发的一项功能&#xff0c;允许在Windows操作系统上运行Linux发行版系统…

expected an expression报错

“expected an expression” 是一种编程错误&#xff0c;通常发生在程序中某个地方需要一个表达式&#xff08;expression&#xff09;的位置&#xff0c;但实际上没有提供一个有效的表达式。 据此&#xff0c;我在main.h—define宏定义中发现了问题&#xff0c;即&#xff1a;…
最新文章