基于Redis实现分布式锁——Java版本

基于Redis实现分布式锁——Java版本

  • 版本一
  • 版本二
  • 版本三
  • Redisson

定义分布式锁接口如下:

public interface ILock {

    boolean tryLock(long timeoutSec);

    void unlock();
}

版本一

设定业务超时时间,到期自动解锁。缺点是超时时间不好估计,需要略大于业务执行的时间。当超时时间小于执行业务时间时,其他线程会拿到锁,而之前的线程执行完后又会解锁,变得混乱,导致线程安全问题。

public class SimpleRedisLock implements ILock{

    @Autowired
    private StringRedisTemplate stringRedisTemplate;
    private String name;
    private static final String KEY_PREFIX = "lock:";
    
    @Override
    public boolean tryLock(long timeoutSec) {
        Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, Thread.currentThread().getId() + "",
                timeoutSec, TimeUnit.SECONDS);
        return Boolean.TRUE.equals(success);
    }
    @Override
    public void unlock() {
        stringRedisTemplate.delete(KEY_PREFIX + name);
    }
}

版本二

解锁时判断锁是否和自己假的锁标识一样,标识使用UUID+线程ID,标识一样才释放锁。每个线程都会创建一个SimpleLock,因此保证UUID不一样。

public class SimpleRedisLock implements ILock{

    private StringRedisTemplate stringRedisTemplate;
    private String name;
    private static final String KEY_PREFIX = "lock:";
    private static final String ID_PREFIX = UUID.randomUUID().toString() + "-";

    public SimpleRedisLock(StringRedisTemplate stringRedisTemplate, String name) {
        this.stringRedisTemplate = stringRedisTemplate;
        this.name = name;
    }

    @Override
    public boolean tryLock(long timeoutSec) {
        String value = ID_PREFIX + Thread.currentThread().getId();
        Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, value,
                timeoutSec, TimeUnit.SECONDS);
        return Boolean.TRUE.equals(success);
    }
    @Override
    public void unlock() {
        String value = ID_PREFIX + Thread.currentThread().getId();
        String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
        if (value.equals(id)) {
            stringRedisTemplate.delete(KEY_PREFIX + name);
        }
    }
}

版本三

某个线程先判断锁是自己的,此时由于其他原因阻塞,比如Full GC,其他线程拿到锁,之前的线程再解锁,但是解的并不是自己的锁,导致线程安全问题。
需要保证这些操作的原子性。使用Lua脚本。
使用redis提供的函数call。key类型参数放入KEYS数组,其他参数放入ARGV数组,Lua中数组角标从1开始。Lua脚本如下。

if (redis.call('get', KEYS[1]) == ARGV[1]) then
    return redis.call('del', KEYS[1])
end
return 0

Lua脚本放在resources文件夹下,在Java代码中调用StringRedisTemplate的execute方法执行Lua脚本。最后分布式锁代码为

public class SimpleRedisLock implements ILock{

    private StringRedisTemplate stringRedisTemplate;
    private String name;
    private static final String KEY_PREFIX = "lock:";
    private static final String ID_PREFIX = UUID.randomUUID().toString() + "-";
    private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
    
    static {
        UNLOCK_SCRIPT = new DefaultRedisScript<>();
        UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
        UNLOCK_SCRIPT.setResultType(Long.class);
    }

    public SimpleRedisLock(StringRedisTemplate stringRedisTemplate, String name) {
        this.stringRedisTemplate = stringRedisTemplate;
        this.name = name;
    }
    @Override
    public boolean tryLock(long timeoutSec) {
        String value = ID_PREFIX + Thread.currentThread().getId();
        Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, value,
                timeoutSec, TimeUnit.SECONDS);
        return Boolean.TRUE.equals(success);
    }
    @Override
    public void unlock() {
        stringRedisTemplate.execute(UNLOCK_SCRIPT,
                Collections.singletonList(KEY_PREFIX + name),
                ID_PREFIX + Thread.currentThread().getId());
    }
}

Redisson

上述实现的分布式锁缺点为:
1、不可重入,同一线程不能对同一把锁多次加锁。
2、不可重试。
3、超时时间不好设置,有可能超时自动释放,虽然不会有误删,但是存在其他线程重新加锁。
4、主从复制的单点问题,主节点宕机导致从节点锁还没有同步。
这些功能属于拓展功能,要么出现概率低,要么可以不需要这样的需求。
Redisson包含分布式锁的成熟实现。

1、Redisson的可重入锁实现原理:
参考ReentrantLock原理,需要存储加锁次数。因此使用Redis中的Hash数据结构。key是锁名称,field是UUID+线程id,value是加锁次数。
2、Redisson的可重试锁和超时释放实现原理:
while持续在重试时间内重试,但不是一直重试,而是消息订阅和信号量,释放了再来重试。
超时释放使用了看门狗机制,每10秒钟续期30秒,无限续期,直到调用unLock方法。
3、Redisson解决主从一致性问题的原理:
去中心化,不要主从,每个节点都需要获取锁,使用了红锁算法。N个节点需要获取N/2+1个锁才能加锁成功。使用Multilock。
缺点是增加读写。
对每个节点都使用配置类把Bean加载到容器中。

RLock lock1 = redissonClient.getLock("order");
RLock lock2 = redissonClient2.getLock("order");
RLock lock3 = redissonClient3.getLock("order");
RLock lock = redissonClient.getMultiLock(lock1, lock2, lock3);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/608416.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Spring Boot的酒店管理系统设计与实现

基于Spring Boot的酒店管理系统设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea 系统部分展示 系统首页界面图&#xff0c;在系统首页可以查看首页…

【数据结构-二叉搜索树的增删查改】

&#x1f308;个人主页&#xff1a;努力学编程’ ⛅个人推荐&#xff1a;基于java提供的ArrayList实现的扑克牌游戏 |C贪吃蛇详解 ⚡学好数据结构&#xff0c;刷题刻不容缓&#xff1a;点击一起刷题 &#x1f319;心灵鸡汤&#xff1a;总有人要赢&#xff0c;为什么不能是我呢 …

python-类和对象

1、设计一个 Circle类来表示圆,这个类包含圆的半径以及求面积和周长的函数。再使用这个类创建半径为1~10的圆,并计算出相应的面积和周长。 &#xff08;1&#xff09;源代码&#xff1a; import math class Circle: def __init__(self, r): self.r r #面积 def area(self): r…

最佳实践 | 八爪鱼采集器如何用PartnerShare做全民分销?

在数字化时代&#xff0c;数据采集和分析已经成为企业运营和决策的重要一环。八爪鱼采集器作为一款领先的SaaS产品&#xff0c;凭借其强大的数据采集和处理能力&#xff0c;成为了众多企业和个人用户的心头好。为了进一步拓展市场份额&#xff0c;提升品牌影响力&#xff0c;八…

TCP通信并发:

上次的程序只能保持&#xff0c;单线程或者进程 多进程并发服务器 进程的特点&#xff08;有血缘关系&#xff09; 创建子进程&#xff1a;fork&#xff08;&#xff09;&#xff1b; 虚拟地址空间被复制 &#xff0c;从一份变成两份&#xff08;用户区和内核区&#xff09…

国内如何访问 OpenAI 的 api

这个问题甚至我的一些大厂的朋友也不太清楚&#xff0c;所以我觉得有必备写一篇文章来简单盘盘它&#xff0c;希望能帮助到有需要的人 众所周知&#xff0c;由于大陆与 OpenAI 双方互相封锁&#xff0c;大陆是无法直接访问 OpenAI api 的 不过由于 GPT 4 的统治地位&#xff0c…

下一代自动化,国外厂商如何通过生成性AI重塑RPA?

企业自动化的未来趋势是什么&#xff1f;科技巨头们普遍认为&#xff0c;由生成性AI驱动的AI Agent将成为下一个重大发展方向。尽管“AI Agent”这一术语尚无统一定义&#xff0c;但它通常指的是那些能够根据指令通过模拟人类互动&#xff0c;在软件和网络平台上执行复杂任务的…

[C++核心编程-05]----C++类和对象之对象的初始化和清理

目录 引言 正文 01-构造函数和析构函数 ​02-构造函数的分类及调用 03-拷贝构造函数调用时机 04-构造函数调用规则 05-深拷贝与浅拷贝 06-初始化列表 07-静态成员变量 08-静态成员函数 …

Eigen求解线性方程组

1、线性方程组的应用 线性方程组可以用来解决各种涉及线性关系的问题。以下是一些通常可以用线性方程组来解决的问题&#xff1a; 在实际工程和科学计算中&#xff0c;求解多项式方程的根有着广泛的应用。 在控制系统的设计中&#xff0c;我们经常需要求解特征方程的根来分析…

【训练与预测】02 - 完整的模型验证套路

02 - 完整的模型验证套路 模型图 验证一个模型就是指使用已经训练好的模型&#xff0c;然后给它提供输入。 test.py import torch import torchvision from PIL import Imagedevice torch.device("cuda" if torch.cuda.is_available() else "cpu") ima…

C++学习笔记——仿函数

文章目录 仿函数——思维导图仿函数是什么仿函数的优势理解仿函数仿函数的原理举例 仿函数——思维导图 仿函数是什么 使用对象名调用operator&#xff08;&#xff09;函数看起来像是在使用函数一样&#xff0c;因此便有了仿函数的称呼&#xff1b;仿函数存在的意义是&#x…

Burp Suite 抓包,浏览器提示有软件正在阻止Firefox安全地连接到此网站

问题现象 有软件正在阻止Firefox安全地连接到此网站 解决办法 没有安装证书&#xff0c;在浏览器里面安装bp的证书就可以了 参考&#xff1a;教程合集 《H01-启动和激活Burp.docx》——第5步

如何防止源代码泄露?彻底解决源代码防泄密的方法

SDC沙盒系统&#xff1a;数据安全的守护者 SDC沙盒系统&#xff0c;为研发型企业设计&#xff0c;实现了对数据的代码级保护&#xff0c;同时不影响工作效率和正常使用。系统通过自动加密敏感数据&#xff0c;并配合多种管控机制&#xff0c;有效防止了数据的泄露。 涉密可信…

代码随想录算法训练营第四十二天| 01背包问题(二维、一维)、416.分割等和子集

系列文章目录 目录 系列文章目录动态规划&#xff1a;01背包理论基础①二维数组②一维数组&#xff08;滚动数组&#xff09; 416. 分割等和子集①回溯法&#xff08;超时&#xff09;②动态规划&#xff08;01背包&#xff09;未剪枝版剪枝版 动态规划&#xff1a;01背包理论基…

渗透之sql注入----二次注入

目录 二次注入的原理&#xff1a; 实战&#xff1a; 第一步&#xff1a;找注入点 找漏洞&#xff1a; 注入大概过程&#xff1a; 第二步&#xff1a;开始注入 二次注入的原理&#xff1a; 二次注入是由于对用户输入的数据过滤不严谨&#xff0c;导致存在异常的数据被出入…

FreeRTOS的任务详解、创建与删除

目录 1、任务详解 1.1 什么是任务&#xff1f; 1.2 任务的特点 1.3 任务的状态 1.4 任务的优先级 1.5 任务的堆和栈 2、任务的创建与删除 2.1 相关API 2.2 函数解析 2.2.1 xTaxkCreate() 2.2.2 xTaskCreateStatic() 2.2.3 vTaskDelete() 3、实战案例 3.1 创建两个…

达梦数据刷盘测试

达梦数据库为了保证数据故障恢复的一致性&#xff0c;REDO 日志的刷盘必须在数据页刷盘之前进行。 下面我们通过测试来验证是不是这样 执行我们事先准备的SHELL脚本 可以看到第一次strings文件没有输出&#xff0c;说明刚写的数据在数据库的BUFFER缓冲区内&#xff0c;还没有刷…

RN阴影组件使用

yarn add react-native-shadow yarn add react-native-svg // 这个是必须的,阴影依赖这个包四周都有阴影,如下设置 import React from react; import {StyleSheet, View, Text} from react-native; import {BoxShadow} from react-native-shadow;const App () > {const …

3GBJ5016A-ASEMI电焊机专用3GBJ5016A

编辑&#xff1a;ll 3GBJ5016A-ASEMI电焊机专用3GBJ5016A 型号&#xff1a;3GBJ5016A 品牌&#xff1a;ASEMI 封装&#xff1a;3GBJ-5 正向电流&#xff08;Id&#xff09;&#xff1a;50A 反向耐压&#xff08;VRRM&#xff09;&#xff1a;1600V 正向浪涌电流&#xf…

“找不到mfcm80u.dll”错误怎么办?一文了解原因和解决办法!

在使用Windows操作系统时&#xff0c;许多用户可能会遇到各种DLL文件缺失或损坏的问题。其中&#xff0c;“找不到mfc80u.dll”错误就是比较常见的一种。 下面小编就给大家分享出现“找不到mfc80u.dll”错误的原因和解决办法&#xff0c;帮助您快速解决此问题。 一、mfc80u.dl…
最新文章