《基于GNU-Radio和USRP的雷达通信系统的实现》文献阅读

文章目录

  • 前言
  • 一、摘要
  • 二、引言
  • 三、联合系统实施
    • 1、基本原理
    • 2、实验方案
  • 四、软件设置
    • 1、发射机
    • 2、接收机
  • 五、实验结果
    • 1、实验设置
    • 2、波形
    • 3、室内外对比
    • 4、不同参数的结果
  • 六、结论
  • 七、参考文献
  • 八、论文自取
  • 九、阅读收获


前言

在这里插入图片描述

本文记录《基于GNU-Radio和USRP的雷达通信系统的实现》(Implementation of Radar-Communication System based on GNU-Radio and USRP)文献阅读学习。

  • 作者及单位:刘宇,杜震,张富强,张增辉,余文先,上海交通大学上海市智能感知与识别重点实验室

  • 发表时间:2019 年

  • 论文类型:会议论文

  • 出版机构:IEEE(电气和电子工程师协会)


一、摘要

正交频分复用(OFDM)在无线通信中得到了广泛应用,其雷达性能最近也受到了很多关注。在本文中,我们建立了一个联合雷达-通信的软件定义无线电(SDR)平台,以 GNU-Radio 作为控制软件,以 USRP 作为其前端。我们使用不同的参数和实验环境进行了多组实验,同时也对获得的结果进行了比较和分析。

二、引言

\hspace{2em} 传统的雷达和通信系统在设计上是独立的,主要考虑到不同波形之间的干扰问题。由于多载波波形的成功应用,例如正交频分复用(OFDM),该技术已被广泛应用于几乎所有当前及即将到来的无线通信标准中【1】,因此 OFDM 波形的雷达探测性能引起了广泛关注。
\hspace{2em} 使用单一的 OFDM 波形实现雷达和通信功能有几个优势。从雷达中心的角度来看,雷达系统的距离(或延迟)分辨率与传输信号带宽成反比【2】。OFDM 调制系统的更宽频率扩展能够提升雷达测量性能。这种两种功能的融合能够实现协同效应,例如允许雷达系统与网络中的其他参与者通信,创建一个协作的雷达系统【3】,这在车辆系统中尤其有用。
\hspace{2em} 本文建立了一个雷达-通信系统,该系统由两个 USRP(通用软件无线电外设)作为硬件平台进行信号的发送和接收。系统由 GNU-Radio 作为命令软件控制。通过有意改变实验参数和环境(室内和室外),进行了多组实验。通信数据处理链使用 GNU-Radio 开发,雷达数据在 MATLAB 中处理,分别计算比特错误率和获得匹配滤波结果。比较和分析了雷达-通信系统在不同场景下的性能。
\hspace{2em} 本文的结构安排如下:第二部分介绍联合系统的基本原理和系统实施。第三部分展示实验设置并总结结果。最后,第四部分得出结论。
联合系统实施

三、联合系统实施

1、基本原理

\hspace{2em} OFDM 信号由并行的正交子载波组成,每个子载波都调制有数据【4】。一个OFDM符号表示为:
在这里插入图片描述
\hspace{2em} 其中, s [ m ] s[m] s[m] 表示被调制的原始数据, N N N 表示子载波数。对于理想的通信系统,接收端的信号为:
在这里插入图片描述
其中 h [ l ] h[l] h[l] 为信道影响, v [ n ] v[n] v[n] 为噪声。但在现实中,时延和载波频偏是不可避免的。实际接收到的信号将是:
在这里插入图片描述
式中 e j 2 π ε n e^{j2\pi \varepsilon n} ej2πεn 为载波频偏, D D D 为时延的影响。然后引入基于训练序列的相关性和周期性的 Schmidl-Cox算法【5】来估计这两个值,以校正偏差。
\hspace{2em} Schmidl-Cox 算法可以简单概括为:首先计算接收信号的相关性
在这里插入图片描述
\hspace{2em} 接收信号的平均功率等于:
在这里插入图片描述
\hspace{2em} 接下来,评估函数被建立如下:
在这里插入图片描述
\hspace{2em} 根据 M [ d ] M[d] M[d],时延参数可估计为
在这里插入图片描述
\hspace{2em} 频率偏移参数是
在这里插入图片描述
\hspace{2em} 与其他雷达系统一样,OFDM雷达通过发送信号并接收该信号从物体上的反射来工作。其主要区别在于,传输的信号原本不是为雷达目的设计的(如FMCW信号),而是用于传递信息【3】。
\hspace{2em} 雷达探测的性能可以通过匹配滤波结果来评估。由于目标信息与回声信号中的噪声混合,匹配滤波操作的实施是将预存的发送数据与接收数据的共轭进行互相关。
在这里插入图片描述
\hspace{2em} 其中 S t x S_{tx} Stx 表示发送序列, S r x S_{rx} Srx 表示接收序列。如果检测到目标,则在上述方程的输出中将出现一个尖峰。在我们的实验中,通过观察匹配的滤波结果和回波的频谱来表征雷达的探测性能。

2、实验方案

\hspace{2em} 采用两个 usrp 建立雷达通信系统。使用一台 USRP X310 作为发射机,配备 UBX-160 子板,可在最大 160MHz 带宽下工作。载波频率从 10MHz 到 6GHz 可调。另一个 USRP N310 作为接收器,它提供 4 个接收和 4 个发送通道同时工作。每个通道提供高达 100MHz 的瞬时带宽。
\hspace{2em} 两个 usrp 都配备了喇叭天线,具有定向模式,因此我们可以获得更强的回波信号。每个 usrp 通过以太网电缆连接到一台电脑。
\hspace{2em} GNU-Radio 是一个实现软件定义无线电的开源软件。在我们的实验中用于控制 usrp 的收发器流程图是基于 GNU-Radio 提供的信号处理模块开发的。完整的实验方案如图 1 所示,包括雷达-通信联合发射机、通信接收机、雷达接收机和目标。
在这里插入图片描述
\hspace{2em} 雷达探测实验必须在收发时间同步的条件下进行。设备间的同步是通过连接同一个外部时钟源来实现的。在相对空旷的情况下,我们接收和保存不同距离的回波信号。然后执行信号处理(例如匹配滤波器)以验证是否找到目标。将匹配滤波结果和回波信号频谱作为反映雷达性能的主要参考
\hspace{2em} 在通信实验中,我们观察了不同通信距离下接收信号的频谱通过比较传输数据和解调后的接收数据,计算误码率,评估不同实验参数下的通信性能

四、软件设置

1、发射机

\hspace{2em} 图 2 和图 3 给出了发射机的设置流程图,包括元数据的生成和 OFDM 调制。如图 2 所示,将数字数据流转换成数据包,并生成循环冗余校验(CRC)码,用于接收端错误检测。然后,在有效载荷位前面添加报头位,以标识打包数据的开始,然后进行星座映射。此时,数据以串行的复数形式呈现。
在这里插入图片描述
\hspace{2em} 我们将预定的导频符号分配给相应的导频载波,并应用串行到并行转换。导频符号用于报文同步。然后对并联的复数据进行 IFFT 运算,将频域数据转换为时域数据。在每个符号中插入循环前缀,就得到要发送的完整时域数据,如图 3 所示。
在这里插入图片描述
\hspace{2em} 发射器 USRP 将基带数据上转换为传输频率,并通过无线信道发送。

2、接收机

\hspace{2em} 图 4 和图 5 描述了接收器的处理链路,负责根据星座图方案转换接收到的数据,并从数据包中提取有效载荷比特。
\hspace{2em} 如图 4 所示,“UHD: USRP Source” 模块控制接收器 USRP 将接收到的信号下变频回基带。在通信实验中,然后应用 Schmidl-Cox 算法实现数据包同步和载波同步(频偏估计)。
在这里插入图片描述
\hspace{2em} 解调 OFDM 信号的第一步是进行 FFT 操作。之后,使用导频符号进行信道估计。然后得到复数数据,这些数据根据传输星座图进行解映射,详见图 5。
在这里插入图片描述

五、实验结果

\hspace{2em} 在通信实验中,我们利用 GNU-Radio 的发送数据和解调后的接收数据直接计算误码率。在雷达探测实验中,对同步发射信号和同步接收信号进行存储,并在 MATLAB 中进行匹配滤波。

1、实验设置

\hspace{2em} 传输的 qpsk 调制 OFDM 信号由 64 个子载波组成,其中 52 个子载波被用来调制数据。其中,4 个子载波用于放置导频符号,48 个子载波用于调制有效载荷位。发射机增益为 31.5dB 以满足最大发射功率 100mw,接收机增益设为 20dB。传输信号的带宽为10MHz。

\hspace{2em} 如前一节所述,我们的实验是在不同的参数和环境下进行的(见图6)。这些变量如下:

  • 中心频率:我们选择了三种不同的中心频率(2.6GHz/3.5GHz/4.9GHz)来满足 5G 通信的要求。
  • 距离:可选择 20米、30米、40米三种不同的检测距离。
  • 除了不同的参数外,我们在室内和室外场景下进行了多次实验。

在这里插入图片描述
\hspace{2em} 在实验中,由于角反射器散射特性强,我们将其作为目标,使接收到的回波更加明显。

2、波形

在这里插入图片描述

图 7 实验环境为室内,中心频率为 2.6 GHz,目标距离为 20m 时的波形图

\hspace{2em} GNU-Radio 提供的图形块可以用来显示波形的时域和频域。图 7(a) 的上半部分表示发射波形的时域(实、虚),下半部分表示频谱。图 7(b) 显示了接收到的波形频谱。接收到的波形与相对平坦的噪声波形明显不同,表明接收到有效回波。

3、室内外对比

\hspace{2em} 为了比较通信和雷达探测在不同场景下的性能,我们在室内和室外进行了多组实验。
\hspace{2em} 在通信系统中,由于接收端对数据包的识别是基于报头位,而解调时又使用CRC码进行检错,因此在室内和室外实验中都能获得相似的通信性能。
\hspace{2em} 然而,雷达探测性能在不同场景之间存在显著差异。如图 8 所示,在相同参数下,室内距离 20m 处接收到的回波频谱与室外距离 40m 处接收到的回波频谱相似(形状和振幅)。此外,室内接收到的回波受杂波影响,频谱抖动明显且不稳定。
在这里插入图片描述

图 8 不同实验环境下的回波频谱

\hspace{2em} 同样,匹配滤波器结果的旁瓣相似,都在 -15 dB 左右,如图 9 所示。
在这里插入图片描述

4、不同参数的结果

\hspace{2em} 表 1 和表 2 总结了多组结果。我们计算误码率并确定雷达是否找到目标(通过观察匹配滤波结果中的尖峰)。
在这里插入图片描述
在这里插入图片描述
\hspace{2em} 在通信性能方面,室内场景接近室外,但雷达性能不如室外。原因可能是室内实验环境较为复杂,会出现各种干扰:杂波、多径等,而室外场景相对空旷,干扰较少。
\hspace{2em} 在误码率可接受的情况下(实际通信中不高于0.1),雷达可探测到 40m 范围内的目标。

六、结论

\hspace{2em} 在这项工作中,我们描述了一个由两个 USRP 设备组成的联合雷达通信系统的实现细节。此外,我们还说明了使用 GNU-Radio 开发该系统的可行性。
\hspace{2em} 在我们的方案中,我们考虑单输入、单输出架构,通过不同的实验参数和场景进行多组实验。通过计算误码率来衡量通信质量,并对匹配的滤波结果进行处理来评估雷达探测性能。最后对这些结果进行了比较,并做了一些推论和总结。

七、参考文献

[1] R. M. Gutierrez, A. Herschfelt, H. Yu, H. Lee and D. W. Bliss, "Joint
radar-communications system implementation using software defined
radios: Feasibility and results," in 51st Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, pp. 1127-1132,
2017
[2] J. Ellinger, Z. Zhang, M. Wicks and Z. Wu, "Multi-carrier radar
waveforms for communications and detection," in IET Radar, Sonar
& Navigation, vol. 11, no. 3, pp. 444-452, 3 2017.
[3] Braun, M., M. Muller, M. Fuhr, and F. K. Jondral, "A USRP-based
testbed for OFDM-based radar and communication systems," in
Proceedings of 22nd Virginia Tech. Symposium on Wireless
Communications, Blacksburg, Jun. 2012.
[4] Y. Leen, C. Sturm, L. Reichhardt, T. Zwick, and W. Wiesbeck, “The
OFDM joint radar-communication system: An overview,” in The
Third International Conference on Advances in Satellite and Space
Communications, 201 SPACOMM, 2011.
[5] T. M. Schmidl, D. C. Cox, "Robust frequency and timing
synchronization for OFDM," in IEEE Transactions on
Communications, vol. 45, no. 12, pp. 1613-1621, Dec. 1997.

八、论文自取

链接:Implementation of Radar-Communication System based on GNU-Radio and USRP

九、阅读收获

\hspace{2em} 首先,这篇会议论文提供了一种使用 GNU Radio 和 USRP 实现雷达通信一体化波形收发的方法,通过这种方法可以实现到目标的距离的测量及通信的功能,我认为可以在此基础上做以下改进会增加内容的可信度和工作量的丰满度:

  • 建议在上面的基础上实现测速功能;
  • 建议通信及测距的功能可以在线实现,而非离线采用 MATLAB 处理;
  • 匹配滤波测距的仿真图不够明显,图中未明显体现当前测距是 20m 还是 40m;
  • 文中有介绍在收发时间同步的条件下进行,设备间的同步是通过连接同一个外部时钟源来实现的,但是未介绍如何使用 MATLAB 对收到的数据处理再匹配滤波实现测距,建议此步骤可描述详细些例如加一些处理流程框图;

以上建议均是个人愚见,不喜勿喷~


我的qq:2442391036,欢迎交流!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/618876.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux下的常用基本指令

基本指令 前言一、ls 指令语法功能常用选项举例注意要点关于拼接关于 -a关于文件ls与/的联用ls与根目录ls与任意文件夹ls与常用选项与路径 ls -d与ls -ldls与ll 二、pwd命令语法功能常用选项注意要点window与Linux文件路径的区别家目录 三、cd 指令语法功能举例注意要点cd路径.…

论文AI率:检测原理是什么?该如何降低论文AI率?

我是娜姐 迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。 上一篇介绍了10个检测AI率的在线工具。本篇来说说AI率到底是如何检测出来的?该如何有效降低论文的AI率? 和AI大模型一样,AI检测的核心也是…

实验0.0 Visual Studio 2022安装指南

Visual Studio 2022 是一个功能强大的开发工具,对于计算机专业的学生来说,它不仅可以帮助你完成学业项目,还能为你将来的职业生涯打下坚实的基础。通过学习和使用 Visual Studio,你将能够更高效地开发软件,并在编程领域…

VBA_NZ系列工具NZ07:日期录入控件

我的教程一共九套及VBA汉英手册一部,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到数据库,到字典,到高级的网抓及类的应用。大家在学习的过程中可能会存在困惑,这么多知识点该如何组织…

在MySQL中如何创建数据库和表

创建数据库 代码格式: CREATE DATABASE (IF NOT EXISTS) 数据库名 (CHARSET utf8) 代码如下: CREATE DATABASE IF NOT EXISTS test CHARSET utf8; 运行完代码之后,右键rootlocalhost,点击刷新对象浏览器即可 注意:mysql数据库一旦创建名字不能修改,只能修改字符…

2024最新最全【网络安全】逆向工程教学

逆向工程 以设计方法学为指导,以现代设计理论、方法、技术为基础,运用各种专业人员的工程设计经验、知识和创新思维,对已有产品进行解剖、深化和再创造。 逆向工程不仅仅在计算机行业、各行各业都存在逆向工程。 计算机行业逆向工程 计算…

Ansible之playbook剧本

目录 1. playbook的组成 2. 剧本示例test1 2.1 剧本制作 2.2 准备http.conf 2.3 运行剧本 2.4 查看webserbers服务器 3. 剧本示例test2--定义、引用变量 3.1 剧本制作 3.2 运行剧本 3.3 查看dbservers服务器 3.4 修改剧本中的变量设定 3.5 在命令行定义变量运行剧本…

Tableau-BI仪表盘搭建

目录 经营数据总览 经营数据详情 每日营收数据 每日流量数据 新老客占比 平台占比 门店占比 投放情况 订单分布 配送分布 汇总搭建仪表板 构思仪表盘布局 经营数据总览 数据总览表,显示的是数据,就拖入文本中,其他同样加入到已经…

vscode打开esp-idf工程,找不到头文件,有波浪线

就像这样 多半是因为原始的工程不是用vscode的插件新建的,因此没有相关的路径。需要在工程文件夹下的.vscode文件夹中的c_cpp_properties.json文件中增加路径,可以参考插件自动新建的工程里面的写法 {"configurations": [{"name":…

1064 朋友数

solution 给出n个整数&#xff0c;统计可能的位数和&#xff0c;并按升序输出&#xff08;考虑用set实现&#xff09; #include<iostream> #include<set> using namespace std; int main(){set<int> st;int n, x, sum;scanf("%d", &n);while…

猫头虎分享已解决Bug || 已解决ERROR: Ruby Gems安装中断 ⚠️ Bug 报告:Gem::RemoteFetcher::FetchError

猫头虎分享已解决Bug || 已解决ERROR: Ruby Gems安装中断 ⚠️ Bug 报告&#xff1a;Gem::RemoteFetcher::FetchError 博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; …

Unity图形图表XChart插件使用

最近做了一款数字孪生项目,其中涉及到了图形图表的应用,网上找了一下,找到了XChart插件,使用起来蛮方便的,不过还有待继续研究,很多细节性的知识点需要进行学习探索。以下是项目中的应用。 官方应用: ![](https://img-blog.csdnimg.cn/direct/ab9de8e84e7b4be4a50ea…

数据库 MySQL 四种事务隔离级别代码演示 -- 读未提交;读已提交;可重复读;串行化

前提 # 设置数据库隔离级别 SET SESSION TRANSACTION ISOLATION LEVEL 隔离级别;# 查询事务隔离级别 select transaction_isolation;事务处理的分离水平对应的数据整合情况&#xff1a; 隔离级别非提交读取&#xff08;脏读&#xff09;不可重复读取幻读READ UNCOMMITED√√√…

浏览器执行渲染原理

一、事件循环 事件循环&#xff08;Event Loop&#xff09;是JavaScript的执行环境的核心概念之一&#xff0c;它负责处理JavaScript中的异步操作和执行顺序。事件循环使得JavaScript能够在单线程上有效地处理并发&#xff0c;同时保持编程模型的简单性。 以下是事件循环的一…

浅谈SiC MOSFET之MOSFET

1.掺杂后的半导体 P型半导体&#xff0c;多子是空穴&#xff0c;少子是自由电子。 N型半导体&#xff0c;多子是自由电子&#xff0c;少子是空穴。 2.电中性 尽管他们分别有着空穴带正电&#xff0c;自由电子带负电&#xff0c;但是整体上是电中性的。 以P型半导体为例&…

开发时如何快速分析代码和生成测试方法(Baidu Comate插件帮我一键分析)

目录 前言 Baidu Comate智能编码助手简介 安装教程 使用RabbitMQ一个绑定队列方法进行演示 进行测试现有功能 使用感觉 测试结果 前言 因为在开发代码的时候&#xff0c;发现有很多都是废话也不是很想写注释 的&#xff0c;毕竟程序员最讨厌的两件事情&#xff0c;一…

scrum项目管理系统,免费scrum管理工具

Leangoo领歌是一款永久免费的专业的敏捷开发管理工具&#xff0c;提供端到端敏捷研发管理解决方案&#xff0c;涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo领歌上手快、实施成本低&#xff0c;可帮助企业快速落地敏捷&#xff0c;提质增效、缩短周期、加速创新…

一款简约大气的个人单页介绍主页(附加源码)

一款简约大气的个人单页介绍主页&#xff08;附加源码&#xff09; 效果图部分源码领取源码下期更新预报 效果图 部分源码 .box_bg{width: 100%;height: 100%; }.wenzi{text-align: center;float: left;display: inline;width: 112px;line-height: 48px; } .wenzi2{text-align…

LORA学习笔记2——训练集处理

前言 对于ai训练来说&#xff0c;处理训练集是模型训练的重要环节。训练集的质量对最终模型的质量影响巨大。这里以二次元角色为例&#xff0c;记录下训练集处理的流程和一些心得。 素材准备 素材准备有以下几个需要注意的点&#xff1a; 通常训练二次元角色需要30张以上的…

Selenium操作对象的方法汇总(如click/clear/submit/sendKeys/getText/getSize等)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…