第八篇: K8S Prometheus Operator实现Ceph集群企业微信机器人告警

Prometheus Operator实现Ceph集群企业微信告警

实现方案

我们的k8s集群与ceph集群是部署在不同的服务器上,因此实现方案如下:

(1) ceph集群开启mgr内置的exporter服务,用于获取ceph集群的metrics

(2) k8s集群通过 Service + Endponit + ServiceMonitor建立ceph集群metrics与Prometheus之间的联系

  1. 建立一个 ServiceMonitor 对象,用于 Prometheus 添加监控项;
  2. 为 ServiceMonitor 对象关联 metrics 数据接口的一个 Service 对象;
  3. 确保 Service 对象可以正确获取到 Metrics 数据;

(3) 通过grafana监控ceph集群

(4) 配置企业微信告警

ceph集群开启内置exporter

Ceph Luminous 12.2.1的mgr中自带了Prometheus插件,内置了 Prometheus ceph exporter,可以使用Ceph mgr内置的exporter作为Prometheus的target。

在ceph集群机器上启动ceph exporter

ceph mgr module enable prometheus

查看Prometheus的服务端口是否启动, prometues exporter启动的端口是9283

netstat -nltp | grep mgr

通过 ceph -s可以看到ceph mgr进程是在哪台机器上启动的

(base) Ceph3 ➜  ~ ceph -s
  cluster:
    id:     21217f8a-8597-4734-acf6-05e9251ce7be
    health: HEALTH_OK
 
  services:
    mon: 3 daemons, quorum Ceph1,Ceph3,Ceph2 (age 10d)
    mgr: Ceph3(active, since 2w), standbys: Ceph2, Ceph1
    mds: cephfs:1 {0=Ceph2=up:active} 2 up:standby
    osd: 24 osds: 24 up (since 2w), 24 in (since 10M)
    rgw: 2 daemons active (Ceph1, Ceph2)
 
  task status:
 
  data:
    pools:   11 pools, 857 pgs
    objects: 27.06M objects, 71 TiB
    usage:   216 TiB used, 133 TiB / 349 TiB avail
    pgs:     856 active+clean
             1   active+clean+scrubbing+deep
 
  io:
    client:   1.3 MiB/s rd, 867 KiB/s wr, 7 op/s rd, 23 op/s wr

这里我们可以看到ceph mgr进程在Ceph3上启动, 在浏览器中输入对应的IP跟9283端口即可访问
在这里插入图片描述

点击蓝色Metrics后,可以看到所有的搜集的指标信息
在这里插入图片描述

k8s集群配置ServiceMonitor

k8s通过 Service + Endpoints 方式, 明确将外部ceph exporter服务映射为内部 Service.

Endpoints

Endpoints是将ceph exporter服务的节点所指向的服务映射到k8s内部服务,yaml配置文件如下

apiVersion: v1
kind: Endpoints
metadata:
  name: ceph-monitor
  namespace: monitoring
  labels:
    app: monitor-ceph
subsets:
- addresses:
  - ip: 10.32.0.15
  ports:
  - name: http
    port: 9283
    protocol: TCP

这里本质上获取服务的IP与Port

Service

Service是k8s内部的服务,可供k8s集群其他服务访问。这里yaml配置文件如下:

apiVersion: v1
kind: Service
metadata:
  name: ceph-monitor
  namespace: monitoring
  labels:
    app: monitor-ceph
spec:
  type: ClusterIP 
  clusterIP: None
  ports:
  - name: http
    port: 9283
    protocol: TCP
    targetPort: 9283

这里需要注意:Service与Endpoints的name要保持一样,另外labels的命名要与name区分开,不要设置成一样,否则会导致咱们的服务无法访问。

ServiceMonitor

通过配置ServiceMonitor可以让Prometheus自动识别到ceph target. yaml文件如下:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: ceph-monitor
  namespace: monitoring
  labels:
    release: prometheus
spec:
  endpoints:
    - port: http
      interval: 30s
  selector:
    matchLabels:
      app: monitor-ceph
  namespaceSelector:
    matchNames:
      - monitoring

这里的labels设置要与Prometheus对象中一致,否则可能会导致ceph的服务无法被Prometheus识别。

将上面三个配置写入到ceph-monitor.yaml文件,然后执行下述命令即可。

kubectl apply -f ceph-monitor.yaml

在这里插入图片描述

打开Prometheus网站可以发现Targets中已经可以监控到ceph集群了,接下来开始配置具体的监控内容和告警。

grafana配置ceph监控告警

配置监控规则方法

prometheus的监控规则文件在prometheus Pod中的路径:/etc/prometheus/rules/prometheus-prometheus-kube-prometheus-prometheus-rulefiles-0/
在这里插入图片描述

而这些文件都是通过一个叫PrometheusRule的k8s资源生成的,PrometheusRule用于配置Promtheus的 Rule 规则文件,包括 recording rules 和 alerting,可以自动被 Prometheus 加载。

至于为什么 Prometheus 能够识别这个 PrometheusRule 资源对象呢?这就需要查看我们创建的 prometheus 这个资源对象了,里面有非常重要的一个属性 ruleSelector,用来匹配 rule 规则的过滤器,我们这里没有过滤,所以可以匹配所有的,假设要求匹配具有 prometheus=k8s 和 role=alert-rules 标签的 PrometheusRule 资源对象,则可以添加下面的配置:

ruleSelector:
  matchLabels:
    prometheus: k8s
    role: alert-rules

为了监控ceph集群,我们需要自定义一些报警规则,其实就是创建一个PrometheusRule的对象即可,然后Prometheus会自动识别。接下来我们重点关注我们需要创建的规则内容。

配置ceph监控规则

首先我们需要整理一下ceph集群一些非常重要的监控内容:

  • ceph 几个重要的服务进程:mon, mgr, mds, osd, rgw
  • ceph osd 的使用率
  • ceph集群的状态
  • ceph集群IO效率

PrometheusRule

PrometheusRule defines recording and alerting rules for a Prometheus instance

FieldDescription
apiVersion stringmonitoring.coreos.com/v1
kind stringPrometheusRule
metadata Kubernetes meta/v1.ObjectMetaRefer to the Kubernetes API documentation for the fields of the metadata field.
spec PrometheusRuleSpecSpecification of desired alerting rule definitions for Prometheus.

配置ceph监控规则

目前网上配置ceph的规则文章基本都没有用,大家都不懂什么意思,这里建议大家弄懂规则的制定方法。

这里有一些注意事项需要说一下:

  • PrometheusRule的metadata下的标签一定要配置一个与k8s集群中prometheus: ruleSelector下定义的相同的标签,否则配置的Rule无法被Prometheus识别

    • 获取prometheus的yaml文件:kubectl get prometheus -n monitoring -o yaml > prometheus.yaml

    • 找到ruleSelector section下的配置信息,例如:

      ruleSelector:
          matchLabels:
            release: prometheus
      

      这里我们找到了标签:release,在配置rule时,填入即可。

  • 配置的规则涉及的指标要从ceph exporter服务中获取。规则的设置方法如下:

    - alert: CephCluster
      expr: ceph_health_status > 0  # 规则的计算公式,需要使用相应的metrics,从ceph exporer服务中获取
      for: 3m
      labels:
         severity: critical
         status: 非常严重
       annotations:
         summary: "{{$labels.instance}}: Ceph集群状态异常"
         description: "{{$labels.instance}}:Ceph集群状态异常,当前状态为{{ $value }}"
    

expr的设计规则

PrometheusRule中的 expr字段用于定义监控规则的表达式。该表达式使用PromQL(Prometheus查询语言)来指定要监控的指标以及触发警报的条件。以下是PromQL的一些常用语法和使用方法的详细介绍:

  1. 指标选择器:

    • 使用 <metric_name>选择特定的指标,例如:cpu_usage
    • 使用 <metric_name>{<label_name>="<label_value>"}选择带有特定标签值的指标,例如:cpu_usage{instance="server1", job="web"}
  2. 二元操作符:

    • ==:等于
    • !=:不等于
    • >:大于
    • >=:大于等于
    • <:小于
    • <=:小于等于
  3. 逻辑操作符:

    • and:逻辑与
    • or:逻辑或
    • unless:逻辑非
  4. 函数:

    • rate(<metric_name>[<time_range>]):计算指标的速率,例如:rate(cpu_usage[5m])
    • sum(<vector>):对指标向量进行求和,例如:sum(cpu_usage)
    • avg(<vector>):对指标向量进行平均值计算,例如:avg(cpu_usage)
  5. 时间范围:

    • [<duration>]:指定一个时间范围,例如:[5m]表示过去5分钟的数据

ceph的监控规则

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
  labels:
    prometheus: k8s
    role: alert-rules
    release: prometheus
  name: ceph-rules
  namespace: monitoring
spec:
  groups:
    - name: ceph
      rules:
      - alert: CephCluster
        expr: ceph_health_status > 0
        for: 3m
        labels:
          severity: critical
          status: 非常严重
        annotations:
          summary: "{{$labels.instance}}: Ceph集群状态异常"
          description: "{{$labels.instance}}:Ceph集群状态异常,当前状态为{{ $value }}"

      - alert: CephOSDDown
        expr: count(ceph_osd_up{} == 0.0) > 0
        for: 3m
        labels:
          severity: critical
          status: 非常严重
        annotations:
          summary: "{{$labels.instance}}: 有{{ $value }}个OSD挂掉了"
          description: "{{$labels.instance}}:{{ $labels.osd }}当前状态为{{ $labels.status }}"
  
      - alert: CephOSDOut
        expr: count(ceph_osd_up{}) - count(ceph_osd_in{}) > 0
        for: 3m
        labels:
          severity: critical
          status: 非常严重
        annotations:
          summary: "{{$labels.instance}}: 有{{ $value }}个OSD Out"
          description: "{{$labels.instance}}:{{ $labels.osd }}当前状态为{{ $labels.status }}"

      - alert: CephOverSpace
        expr: ceph_cluster_total_used_bytes / ceph_cluster_total_bytes * 100 > 80
        for: 3m
        labels:
          severity: critical
          status: 非常严重
        annotations:
          summary: "{{$labels.instance}}:集群空间不足"
          description: "{{$labels.instance}}:当前空间使用率为{{ $value }}"
  
      - alert: CephMonDown
        expr: count(ceph_mon_quorum_status{}) < 3
        for: 3m
        labels:
          severity: critical
          status: 非常严重
        annotations:
          summary: "{{$labels.instance}}:Mon进程异常"
          description: "{{$labels.instance}}: Mon进程Down"
  
      - alert: CephMgrDown
        expr: sum(ceph_mgr_status{}) < 1.0
        for: 3m
        labels:
          severity: critical
          status: 非常严重
        annotations:
          summary: "{{$labels.instance}}:Mgr进程异常"
          description: "{{$labels.instance}}: Mgr进程Down"
  
      - alert: CephMdsDown
        expr: sum(ceph_mds_metadata{}) < 3.0
        for: 3m
        labels:
          severity: warning
          status: 告警
        annotations:
          summary: "{{$labels.instance}}:Mds进程异常"
          description: "{{$labels.instance}}: Mds进程Down"
  
      - alert: CephRgwDown
        expr: sum(ceph_rgw_metadata{}) < 2.0
        for: 3m
        labels:
          severity: warning
          status: 告警
        annotations:
          summary: "{{$labels.instance}}:Rgw进程异常"
          description: "{{$labels.instance}}: Rgw进程Down"
  
      - alert: CephOsdOver
        expr: sum(ceph_osd_stat_bytes_used / ceph_osd_stat_bytes > 0.8) by (ceph_daemon) > 0
        for: 3m
        labels:
          severity: warning
          status: 告警
        annotations:
          summary: "{{$labels.instance}}:High OSD Usage Alert"
          description: "{{$labels.instance}}: Some OSDs have usage above 80%"
  
  
  

在k8s集群中配置生效,然后检查是否生效。如果没有生效,回去检查ruleSelector的标签是否配置正确

kubectl apply -f ceph_rules.yaml -n monitoring

在这里插入图片描述

说明我们的配置生效了,接下来开始在grafana中配置企业微信告警

Grafana配置企业微信告警

配置企业微信机器人

这里很简单,就不展开了。具体操作流程:找一个自己是群主的群聊,然后点击企业微信右上角的 ...并点击添加机器人,点击 新创建一个机器人,输入机器人名称及配置图片就生成好了。最后会得到一个链接: https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key=xxx

这里我配置了,但是无法直接在Grafana中配置webhook进行发送告警信息,这里需要使用第三方服务进行信息中转才能将消息发送到企业微信机器人。

部署中转服务

我在github上找到了两个项目:

第一个是 g2ww 我尝试了,并没有发送成功,总是报 40038, url长度错误。这里pass掉

第二个是 cloopy, 这个项目我测试成功。下面是我的处理流程:

step1 首先下载项目

git clone https://github.com/liozzazhang/message-transfer.git

step2 由于我使用的是k8s部署,所以这里要生成镜像部署,下面是生成的Dockerfile

FROM golang:latest AS build

COPY .  /go/src
WORKDIR /go/src

RUN CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -o /go/bin/cloopy *.go

FROM alpine

COPY --from=build /go/bin/cloopy /cloopy
ENV TZ=Asia/Shanghai
CMD ["/cloopy"]

根据dockerfile生成镜像

docker build -t cloopy:latest .

step3 测试验证:镜像生成之后可以直接在本机上进行部署测试验证是否可以转发告警信息

docker run --rm -d -p 12345:12345 cloopy:latest

docker启动成功后,可以通过 docker logs -f $container_id 进行查看服务启动日志。

在grafana网页的添加Contact Points页面添加URL, URL格式为:http://10.66.17.96:12345/cloopy/grafana?webhook=https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key=xxx

在这里插入图片描述

step4 测试通过后,开始编写k8s部署的yaml文件,如果使用域名的话,还需配置ingress

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: cloopy
  namespace: monitoring
  labels:
    app: cloopy
spec:
  replicas: 1 
  selector:
    matchLabels:
      app: cloopy
  template:
    metadata:
      labels:
        app: cloopy
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                  - key: kubernetes.io/hostname
                    operator: In
                    values:
                      - master01
                      - master02
                      - master03
      containers:
      - name: cloopy
        image: cloopy:latest
        # command:
        #   - /bin/bash 
        #   - "./bin/monitor.sh"
        ports:
        - containerPort: 12345

---
apiVersion: v1
kind: Service
metadata:
  name: cloopy 
  namespace: monitoring
  labels:
    app: cloopy 
spec:
  ports:
  - name: http
    port: 12345
    protocol: TCP
    targetPort: 12345
  selector:
    app: cloopy 
  type:
    LoadBalancer
---

---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: cloopy 
  namespace: monitoring
spec:
  ingressClassName: nginx
  rules:
  - host: webhook.com 
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: cloopy
            port: 
              number: 12345 
        path: /

然后在k8s上进行部署即可: kubectl apply -f development.yaml。部署完成后,将grafana里URL测试环境的服务地址换成生产环境的域名或者IP再验证一下就可以了。

http://webhook.com/cloopy/grafana?webhook=https://qyapi.weixin.qq.com/cgi-bin/webhook/send?key=xxx

至此企业微信的Webhook便配置成功了。
在这里插入图片描述

配置企业微信

需要创建企业微信应用程序,并得到corp_id, secret_id, app_id。这几个变量要配置好。

然后将这几个变量配置到webcam下对应的变量就可以使用了,这个比较简单,但是其灵活性不如企业微信机器人。

配置告警规则

在配置告警规则时,我遇到了另外一个问题:通过AlertManager配置的rule无法在datasource Prometheus下进行告警,配置Alert时找不到这些告警内容,这里只能重新创建Alert Rule,然后再通过label进行绑定。
在这里插入图片描述

所以我将ceph下的规则又重新配置了一遍,我目前还没有找到好的方法进行yaml文件配置,等以后发现了再补充,目前是手动添加告警规则。

参考

如何用 Prometheus Operator 监控 K8s 集群外服务? - 掘金 (juejin.cn)

使用Operator管理Prometheus · Prometheus中文技术文档

Getting Started - Prometheus Operator (prometheus-operator.dev)

K8S集群部署kube-Prometheus监控Ceph(版本octopus)集群、并实现告警。_promethus基于ceph相关的告警规则_石头-豆豆的博客-CSDN博客

Prometheus Operator 配置PrometheusRule告警规则_prometheus runbook_url_富士康质检员张全蛋的博客-CSDN博客

prometheus-operator/Documentation/api.md at main · prometheus-operator/prometheus-operator · GitHub

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/64816.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

推荐5本软件测试人员必读经典书籍

学会选择对的学习方法 俗话说&#xff1a;“选择大于努力”。 初学软件测试也如此。很多刚入行测试的同学最容易陷入一个误区&#xff0c;那就是优先买一堆视频来学习。结果时间过去了&#xff0c;视频仅以形式主义存在电脑的硬盘里&#xff0c;从此走上了入门到放弃之路。 …

TCP/IP四层模型对比OSI七层网络模型的区别是啥?数据传输过程原来是这样的

一、TCP/IP四层模型对比OSI七层模型 它们两个定义的一些功能和协议都是差不多的。TCP/IP四层协议模型比我们的七层少了三层&#xff0c;把我们的数据链路层和物理层放在一层里面了&#xff0c;叫做数据链路层&#xff08;网络接口层&#xff09;&#xff0c;对应网络协议也没有…

CNN成长路:从AlexNet到EfficientNet(02)

一、说明 在~10年的深度学习中&#xff0c;进步是多么迅速&#xff01;早在 2012 年&#xff0c;Alexnet 在 ImageNet 上的准确率就达到了 63.3% 的 Top-1。现在&#xff0c;我们超过90%的EfficientNet架构和师生训练&#xff08;teacher-student&#xff09;。 二、第一阶段 …

c++:day4

1.思维导图 2.shell函数获取uid和gid&#xff0c;并用变量接 #!/bin/bashfunction fun() {read -p "输入用户名" necho uid:id -u $necho gid:id -g $n } afun echo $a3.冒泡、选择和快排代码整理 /**************************************************************…

【MATLAB第66期】#源码分享 | 基于MATLAB的PAWN全局敏感性分析模型(有条件参数和无条件参数)

【MATLAB第66期】#源码分享 | 基于MATLAB的PAWN全局敏感性分析模型&#xff08;有条件参数和无条件参数&#xff09; 文献参考 Pianosi, F., Wagener, T., 2015. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions.…

【具身智能】系列论文解读(CoWs on PASTURE VoxPoser Relational Pose Diffusion)

0. My Conclusion CoWs on PASTURE&#xff1a; 擅长零样本的视觉语言对象导航&#xff0c;主要解决了LLM辅助下的任务级动作执行任务VoxPoser&#xff1a; 擅长设计一些未预定义的动作轨迹&#xff0c;主要解决了LLM辅助下的动作轨迹设计任务Relational Pose Diffusion&#…

【使用基于二阶积分器的结构生成正交信号】基频共振而无延迟地滤波信号的正交信号生成模块,为单相系统创建 α/β 信号(Simulink实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

python人工智能可以干什么,python人工智能能干什么

大家好&#xff0c;给大家分享一下python做人工智能需要什么水平&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 人工智能包含常用机器学习和深度学习两个很重要的模块&#xff0c;而python拥有matplotlib、Numpy、sklearn、keras等大量的…

人民日报点赞!十大央媒争相报道,星恒守护民生安全出行二十年

围绕电动自行车锂电池的安全性话题&#xff0c;甚至说争议&#xff0c;在近期有了权威定调。 就在7月底&#xff0c;“民生出行&#xff0c;安全为本——电动自行车锂电安全调研座谈会”在北京人民日报社举行&#xff0c;国家监管部门、行业协会、检验院所的权威领导专家&#…

Bean的Aware接口

Aware 简介 Spring中提供了一些以Aware结尾的接口&#xff0c;实现了Aware接口的bean在被初始化之后&#xff0c;可以获取相应资源。比如BeanNameAware之类的以Aware结尾的接口&#xff0c;这个接口获取的资源就是以BeanName相关的。 通过Aware接口&#xff0c;可以对Spring相…

k8s之Pod控制器

目录 一、Pod控制器及其功用二、pod控制器的多种类型2.1 pod容器中的有状态和无状态的区别 三、Deployment 控制器四、SatefulSet 控制器4.1 StatefulSet由以下几个部分组成4.2 为什么要有headless&#xff1f;4.3 为什么要有volumeClaimTemplate&#xff1f;4.4 滚动更新4.5 扩…

Mongodb 安装

一、win10安装 服务端下载地址&#xff1a;Download MongoDB Community Server | MongoDB shell 工具下载地址&#xff1a;MongoDB Shell Download | MongoDB 服务端安装时选择custom&#xff0c;否则安装文件没有bin目录。 将安装后的文件中的bin目录加到环境变量。 设置…

echarts中如何给柱状图增加滚动条

需求:当后台传递过来的数据过多的时候 页面的柱图就会很拥挤 如下图: 所以我们需要有一个横向的滚动条,让所有的柱子都能够展示 1.echarts中有一个dataZoom属性 可以给图形增加一个横向的滚动条 dataZoom:[ {type: slider, //滑动条型数据区域缩放组件realtime: true, //拖动…

【小吉带你学Git】idea操作(2)_版本和分支的相关操作

&#x1f38a;专栏【Git】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【Counting Stars 】 欢迎并且感谢大家指出小吉的问题&#x1f970; 文章目录 &#x1f354;版本⭐首先创建一个项目⭐添加暂存区⭐提交本地库&#x1f33…

Redis键值设计

1.1、优雅的key结构 Redis的Key虽然可以自定义&#xff0c;但最好遵循下面的几个最佳实践约定&#xff1a; 遵循基本格式&#xff1a;[业务名称]:[数据名]:[id]长度不超过44字节不包含特殊字符 例如&#xff1a;我们的登录业务&#xff0c;保存用户信息&#xff0c;其key可以…

Linux 中利用设备树学习Ⅳ

系列文章目录 第一章 Linux 中内核与驱动程序 第二章 Linux 设备驱动编写 &#xff08;misc&#xff09; 第三章 Linux 设备驱动编写及设备节点自动生成 &#xff08;cdev&#xff09; 第四章 Linux 平台总线platform与设备树 第五章 Linux 设备树中pinctrl与gpio&#xff08;…

24届近5年东华大学自动化考研院校分析

今天给大家带来的是东华大学控制考研分析 满满干货&#xff5e;还不快快点赞收藏 一、东华大学 学校简介 东华大学&#xff08;Donghua University&#xff09;&#xff0c;地处上海市&#xff0c;是教育部直属全国重点大学&#xff0c;国家“双一流”、“211工程”建设高校…

HBase-写流程

写流程顺序正如API编写顺序&#xff0c;首先创建HBase的重量级连接 &#xff08;1&#xff09;读取本地缓存中的Meta表信息&#xff1b;&#xff08;第一次启动客户端为空&#xff09; &#xff08;2&#xff09;向ZK发起读取Meta表所在位置的请求&#xff1b; &#xff08;…

力扣62.不同路径(动态规划)

/*** 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。* 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。* 问总共有多少条不同的路径&#xff1f; *…

elevation mapping学习笔记3之使用D435i相机离线或在线订阅点云和tf关系生成高程图

文章目录 0 引言1 数据1.1 D435i相机配置1.2 协方差位姿1.3 tf 关系2 离线demo2.1 yaml配置文件2.2 launch启动文件2.3 数据录制2.4 离线加载点云生成高程图3 在线demo3.1 launch启动文件3.2 CMakeLists.txt3.3 在线加载点云生成高程图0 引言 elevation mapping学习笔记1已经成…