C语言内嵌汇编

反编译(二进制文件或者so库)

objdump --help
objdump -M intel -j .text -ld -C -S  out > out.txt #显示源代码同时显示行号, 代码段反汇编
		-M intel 英特尔语法
		-M x86-64
		-C:将C++符号名逆向解析
		-S 反汇编的同时,将反汇编代码和源代码交替显示
		-l 插入源文件名和行号
		-d 将代码段反汇编
		-j section:仅反汇编指定的section


一、基础内联汇编:

单个%前缀修饰寄存器
立即数都有 ‘$’ 前缀。如 “movl $78, %1 \n”
以 ‘b’、‘w’ 和 ‘l’ 为后缀指明内存访问长度是:movb movl
基址寄存器是放在小括号 () 内的。例:section: disp(base, index, scale)

二、扩展内联汇编:

两个%前缀修饰寄存器, 单个 % 前缀修饰操作数

 语法:
	`asm` [`volatile`] ( 
	汇编程序
	: 输出
	: 输入
	: 寄存器列表
	);

__asm__ 等同于  asm 
__volatile__ 等同于 volatile

示例 参考:https://blog.csdn.net/lwx62/article/details/82796364

#include <iostream>
using namespace std;

int main11(int argc, char*argv[])
{
    int a=10, b;
    asm ("movl %1, %%eax;"
         "movl %%eax, %0;"
        :"=b"(b)        /* output */
        :"c"(a)         /* input */
        :"%eax"         /* clobbered register */
        );

    int count = 1;
    char *str = "hello world!\n";
    asm("int $0x80"
        : "=a"(count)
        : "a"(5), "b"(1), "c"(str), "d"(13));

    int var = 100;
    asm ("incl %0" :"=a"(var):"0"(var)); //+1
    asm ("decl %0" :"=a"(var):"0"(var)); //-1
    //asm ("sidt %0\n" : :"m"(var));

    cout << var << endl;
    return 0;
}

int main22()
{
    int foo = 10, bar = 15;
    __asm__ __volatile__("addl  %%ebx,%%eax"
                         :"=a"(foo)
                         :"a"(foo), "b"(bar)
                         );
    printf("foo+bar=%d\n", foo);
    return 0;
}


int main33()
{
    int my_var = 10;
    int my_int = 20;
    int foo = 10, bar = 15;
    __asm__ __volatile__(
        "   lock       ;\n"
        "   subl %1,%0 ;\n"
        : "=m"  (my_var)
        : "ir"  (my_int), "m" (my_var)
        :
        );
    cout << "my_var-my_int=:" << my_var << endl;
    cout << "my_int:" << my_int << endl;
    return 0;
}

static inline char * _strcpy(char * dest,const char *src)
{
	int d0, d1, d2;
	__asm__ __volatile__(  "1:\tlodsb\n\t"
		                   "stosb\n\t"
		                   "testb %%al,%%al\n\t"
		                   "jne 1b"
		                 : "=&S"(d0), "=&D"(d1), "=&a"(d2)
		                 : "0" (src), "1" (dest) 
		                 : "memory");
	//lodsb:load string; 
	//stosb:store string;
	//testb:就是test测试检查src/dst是否一致
	//约束“&S”,“&D”,“&a”表示寄存器esi,edi和eax, 
	//是early clobber寄存器,即它们的内容将在函数完成之前改变
	//jne:判断上一步结果是否等于0,如果不等于0,则ZF=0,则进行跳转
	//1b: 表示 backward 向前跳转,1表示局部标签1
	//1f: 表示 forward 向后跳转

	return dest;
}

int main()
{
    int a = 1;
    int b = 2;
    asm("movl %%eax,%1" ::"a"(a), "m"(b));
    cout << b << endl;
    
    int var = 100;
    asm ("incl %0" :"=a"(var):"0"(var));  //自+1
    asm ("decl %0" :"=a"(var):"0"(var));  //自-1
    
    //
    const char* s1="hello ASM";

    char buf[1024]={0};
    _strcpy(buf,s1);
    cout << " s1:" << s1 << endl;
    cout << "buf:" << buf << endl;
}

/*
%0、%1 ... %9 它们依次代表 10 个操作数
a:表示寄存器eax
b:表示寄存器ebx
c:表示寄存器ecx
d:表示寄存器edx
D:表示寄存器edi
S:表示寄存器esi
q:表示以下任意四个寄存器之一:eax/ebx/ecx/edx
r:表示任意六个通用寄存器之一:eax/ebx/ecx/edx/edi/esi
g:表示可以存放到任意地点
A:把eax和edx组合成64位数
f:表示浮点寄存器
t:表示第一个浮点寄存器
u:表示第二个浮点寄存器

m:操作数内存
o:偏移量访问

*/

32位前缀 E
64位前缀 R
在这里插入图片描述

两家汇编主要区别

Intel CodeAT&T Code
mov eax,1movl $1,%eax
mov ebx,0ffhmovl $0xff,%ebx
int 80hint $0x80
mov ebx, eaxmovl %eax, %ebx
mov eax,[ecx]movl (%ecx),%eax
mov eax,[ebx+3]movl 3(%ebx),%eax
mov eax,[ebx+20h]movl 0x20(%ebx),%eax
add eax,[ebx+ecx*2h]addl (%ebx,%ecx,0x2),%eax
lea eax,[ebx+ecx]leal (%ebx,%ecx),%eax
sub eax,[ebx+ecx*4h-20h]subl -0x20(%ebx,%ecx,0x4),%eax

CPU 一般规则:

eax: 执行加法,函数返回值
ebx: 数据存取
ecx: 计数器
edx: 读写I/O端口时,edx用来存放端口号
esp: 栈顶指针
ebp: 栈底指针,ebp+偏移量 来定位 栈中变量
esi: 字符串操作时,用于存放数据源的地址
edi: 字符串操作时,用于存放目的地址的

寄存器常识

通用寄存器:r8-r15

标志寄存器
	CF 进位标志
	PF 奇偶标志
	ZF 零标志
	SF 符号标志
	OF 补码溢出标志
	TF 跟踪标志
	IF 中断标志
	...
指令寄存器
段寄存器

控制寄存器
	int3软中断指令,向量号为3
	32位:cr0-cr4
	    cr0: CPU控制标记和工作状态
	    cr1: 保留未使用
	    cr2: 页错误出现时保存导致出错的地址
	    cr3: 当前进程的虚拟地址空间的重要信息:页目录地址
	    cr4: 也存储了CPU工作相关以及当前人任务的一些信息
	64位:cr8

调试寄存器
	8个:DR0~DR7

描述符寄存器
	全局描述符表GDT(Global Descriptor Table):
		一级描述符表,一个处理器对应一个GDT,GDT可以被放在内存的任何位置,但CPU必须知道GDT的入口
		LGDT和SGDT分别用于加载和保存GDTR寄存器的内容
	
	局部描述符表LDT(Local Descriptor Table):
		二级描述符表,有若干张,每个任务一张;LDTR可以在程序中随时改变,通过使用lldt指令
		由于每个进程都有自己的一套程序段、数据段、堆栈段,有了局部描述符表,
		则可以将每个进程的程序段、数据段、堆栈段封装在一起,只要改变LDTR就可以实现对不同进程的段进行访问
	
	中断描述符表寄存器IDTR:LIDT和SIDT分别用于加载和保存IDTR寄存器的内容

任务寄存器TR:
	用于寻址一个特殊的任务状态段(Task State Segment,TSS)指令LTR和STR分别用于加载和保存TR寄存器的段选择符部分

MSR寄存器

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/66319.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python自动化测试用例:如何优雅的完成Json格式数据断言

目录 前言 直接使用 优化 封装 小结 进阶 总结 资料获取方法 前言 记录Json断言在工作中的应用进阶。 直接使用 很早以前写过一篇博客&#xff0c;记录当时获取一个多级json中指定key的数据&#xff1a; #! /usr/bin/python # coding:utf-8 """ aut…

3分钟创建新生分班查询二维码,无需技术、0成本

作为教师&#xff0c;我们深知分班是一项极其重要的任务&#xff0c;需要综合考虑学生的性格、能力和兴趣等多个方面&#xff0c;以确保每个学生都能够获得最佳的学习环境和成绩。在本文中&#xff0c;我将分享一种便捷的方式来告知家长有关分班录取情况的方法。 通常&#xf…

2. 软件需求 面向对象分析

目录 1. 软件需求 1.1 需求分类 1.2 需求获取 1.3 需求分析 2. 面向对象分析&#xff08;OOA&#xff09; 2.1 统一建模语言 UML 2.2 用例模型 2.2.1 用例图的元素 2.2.2 识别参与者 2.2.3 合并需求获得用例 2.2.4 细化用例描述 2.3 分析模型 2.3.1 定义概念类 …

深入JVM - JIT分层编译技术与日志详解

深入JVM - JIT分层编译技术与日志详解 文章目录 深入JVM - JIT分层编译技术与日志详解1. 背景简介2. JIT 编译器2.1. 客户端版本的编译器: C12.2. 服务端版本的编译器: C22.3. Graal JIT 编译器 3. 分层编译技术(Tiered Compilation)3.1. 汇聚两种编译器的优点3.2. 精准优化(Ac…

Redis内网主从节点搭建

Redis内网主从节点搭建 1、文件上传2、服务安装3、服务启动4、配置主从复制 1、文件上传 内网环境手动上传gcc-c、redis.tar文件 2、服务安装 # 解压 unzip gcc-c.zip unzip gcc_rpm.zip tar -zxvf redis-6.2.13.tar.gz# 安装 cd gcc_rpm/ rpm -ivh *.rpm --nodeps --force…

gitlab 503 错误的解决方案

首先使用 sudo gitlab-ctl status 命令查看哪些服务没用启动 sudo gitlab-ctl status 再用 gitlab-rake gitlab:check 命令检查 gitlab。根据发生的错误一步一步纠正。 gitlab-rake gitlab:check 查看日志 tail /var/log/gitlab/gitaly/current删除gitaly.pid rm /var/opt…

Webpack怎么使用?

Webpack 使用 前几篇文章中已经介绍了如何初始化包管理器 package.json 这里不再重复介绍&#xff0c;如有需要请查看 搭建工程化项目。 安装 :::warning 注意 请确保你已经安装了 yarn&#xff0c;如有需要请查看 搭建工程化开发环境。 ::: 通过命令 yarn add webpack web…

三天吃透Java面试八股文(2023最新整理),面试通过率高达90%

什么样的求职者能够获得面试官的青睐&#xff1f;求职者需要准备哪些内容来面对形形色色的面试官&#xff1f;这两份资料是我在几十场面试中被面试官问到的问题&#xff0c;比其他复制粘贴的面试题强一百倍&#xff0c;堪称全网最强&#xff08;我不太喜欢“全网最强”这样的字…

mybatis打印sql语句出现多余的limit关键字

1、事情起因 在项目中使用了PageHelper分页插件&#xff0c;由于需求特殊&#xff0c;需要自定义分页&#xff0c;代码编写完成后&#xff0c;事故出现了。 前端传参: {pageNum: 1,pageSize: 10, }已知表中数据10条&#xff0c;但是每次分页查询只有10条数据&#xff0c;排查…

【C语言】初识C语言+进阶篇导读

✨个人主页&#xff1a; Anmia.&#x1f389;所属专栏&#xff1a; C Language &#x1f383;操作环境&#xff1a; Visual Studio 2019 版本 本篇目的是面向编程新手&#xff0c;没接触过编程的人。以及C进阶的导读。 内容是C语言重要知识点的简单解释&#xff0c;不做详解。给…

uniapp echarts 点击失效

这个问题网上搜了一堆&#xff0c;有的让你降版本&#xff0c;有的让你改源码。。。都不太符合预期&#xff0c;目前我的方法可以用最新的echarts。 这个方法就是由npm安装转为CDN&#xff0c;当然你可能会质疑用CDN这样会不稳定&#xff0c;那如果CDN的地址是本地呢&#xff1…

【MySQL系列】表约束的学习

「前言」文章内容大致是MySQL的表的约束。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、MySQL表的约束1.1 空属性1.2 默认值&#xff08;default&#xff09;1.3 列描述&#xff08;comment&#xff09;1.4 zerofill1.5 主键&#xff08;primary ke…

简化AD管理减少IT工作负担

管理和保护混合 AD 环境 IT 管理员几乎每天都要创建和管理多个 AD 对象&#xff0c;利用本机AD工具&#xff08;如Active Directory用户和计算机控制台以及PowerShell脚本&#xff09;来执行这些任务并不理想&#xff0c;因为它们必须在多个控制台之间切换才能执行这些任务&am…

CTF PWN之精确覆盖变量数据

刚开始接触pwn的朋友在做pwn练习时可能会有这样的疑问&#xff0c;怎么做到精确覆盖变量数据呢&#xff1f; 我们做pwn练习之前需要先知道&#xff1a;命令行参数C语言的main函数拥有两个参数&#xff0c;为int类型的argc参数&#xff0c;以及char**类型argv参数。其中argc参数…

npm install时出现的问题Failed at the node-sass@4.14.1 postinstall script

从阿里云上拉取下来项目后&#xff0c;首先使用npm install 命令进行安装所需依赖&#xff0c;意想不到的事情发生了&#xff0c;报出了Failed at the node-sass4.14.1 postinstall script&#xff0c;这个问题&#xff0c;顿时一脸懵逼&#xff1b;询问前端大佬&#xff0c;给…

Tomcat线程池原理

1. 一个 SpringBoot 项目能同时处理多少请求&#xff1f;tomcat容器&#xff0c; 200 次。 2. 怎么来的&#xff1f; 而点击这些线程&#xff0c;查看其堆栈消息&#xff0c;可以看到 Tomcat、threads、ThreadPoolExecutor 等关键字 基于“短时间内有 200 个请求被立马处理…

CentOS虚拟机 NAT模式连网

1、查看本地VMnet8的网络信息 cmd ipconfig2、编辑VMware虚拟网络编辑器 &#xff08;1&#xff09;打开网络编辑器 &#xff08;2&#xff09;打开NET设置 &#xff08;3&#xff09;修改网络配置 修改子网ip和windows查到的ip的最后一位不一样就行和子网掩码照抄 3、在VMw…

宝尊电商短期前景堪忧,宝尊国际能否取得成功还有待验证

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 核心业务面临短期逆风 在2023年第一季度财报中&#xff0c;宝尊电商&#xff08;BZUN&#xff09;表示其电商业务(简称BEC)主要包括&#xff1a;品牌的门店运营、客户服务以及物流和供应链管理、IT和数字营销等增值服务”。…

Spring Data学习笔记Day01-SpringData入门

Spring Data基本介绍 目录 Spring Data Redis 官方API参考手册&#xff01;★ Spring Data的价值★ Spring Data及其子项目★ 强大的Spring Data★ Repository接口★ 具体Repository接口★ Spring Data JPA开发★ Spring Boot如何选择DataSource★ 数据源相关配置★ 配置第三方…

大数据技术之Hadoop:HDFS集群安装篇(三)

目录 分布式文件系统HDFS安装篇 一、为什么海量数据需要分布式存储 二、 分布式的基础架构分析 三、 HDFS的基础架构 四 HDFS集群环境部署 4.1 下载安装包 4.2 集群规划 4.3 上传解压 4.4 配置HDFS集群 4.5 准备数据目录 4.6 分发hadoop到其他服务器 4.7 配置环境变…
最新文章