基于TF-IDF+TensorFlow+词云+LDA 新闻自动文摘推荐系统—深度学习算法应用(含ipynb源码)+训练数据集

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python 环境
    • TensorFlow环境
      • 方法一
      • 方法二
  • 模块实现
    • 1. 数据预处理
      • 1)导入数据
      • 2)数据清洗
      • 3)统计词频
    • 2. 词云构建
    • 3. 关键词提取
    • 4. 语音播报
    • 5. LDA主题模型
    • 6. 模型构建
  • 系统测试
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目运用了TF-IDF关键词提取技术,结合词云数据可视化、LDA (Latent Dirichlet Allocation)模型训练以及语音转换系统,来实现一个基于TensorFlow的文本摘要程序。

首先,我们利用TF-IDF(Term Frequency-Inverse Document Frequency)技术来提取文本中的关键词。这有助于找出文本中最具代表性的词汇,为后续的摘要提取提供了重要的信息。

其次,我们运用词云数据可视化技术,将关键词以视觉化的方式展示出来。这能够帮助用户直观地理解文本的重点和关注点。

接下来,我们使用LDA模型进行训练,这是一种用于主题建模的技术。通过LDA模型,我们能够发现文本中隐藏的主题结构,从而更好地理解文本内容的分布和关联。

最后,我们将这些技术结合在一起,创建了一个基于TensorFlow的文本摘要程序。这个程序可以自动提取文本的关键信息、主题结构,并生成简明扼要的文本摘要。

另外,我们还融合了语音转换系统,使得生成的文本摘要能够通过语音方式呈现,提升了用户的体验和使用便捷性。

通过这个项目,我们能够将多种技术融合在一起,实现一个功能强大的文本摘要程序,为用户提供更便捷、直观的文本理解和获取体验。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括 Python 环境和TensorFlow环境。

Python 环境

需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成对Python环境的配置,下载地址为https://www.anaconda.com/。也可下载虚拟机在Linux环境下运行代码。

TensorFlow环境

安装方法如下:

方法一

打开Anaconda Prompt,输入清华仓库镜像。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config -set show_channel_urls yes

创建Python 3.6的环境,名称为TensorFlow,此时Python版本和后面TensorFlow的版本有匹配问题,此步选择Python 3.x。

conda create -n tensorflow python=3.6

有需要确认的地方,都输入y。在Anaconda Prompt中激活TensorFlow环境:

conda activate tensorflow

安装CPU版本的TensorFlow:

pip install -upgrade --ignore -installed tensorflow

测试代码如下:

import tensorflow as tf
hello = tf.constant( 'Hello, TensorFlow! ')
sess = tf.Session()
print sess.run(hello)
# 输出 b'Hello! TensorFlow'

安装完毕。

方法二

打开Anaconda Navigator,进入Environments 单击Create,在弹出的对话框中输入TensorFlow,选择合适的Python版本,创建好TensorFlow环境,然后进入TensorFlow环境,单击Not installed在搜索框内寻找需要用到的包。例如,TensorFlow,在右下方选择apply,测试是否安装成功。在Jupyter Notebook编辑器中输入以下代码:

import tensorflow as tf
hello = tf.constant( 'Hello, TensorFlow! ')
sess = tf.Session()
print sess.run(hello)
# 输出 b'Hello! TensorFlow'

能够输出hello TensorFlow,说明安装成功。

模块实现

本项目包括6个模块:数据预处理、词云构建、关键词提取、语音播报、LDA主题模型、模型构建,下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

在清华大学NLP实验室推出的中文文本数据集THUCNews中下载,下载地址为https://github.com/gaussic/text-classification-cnn-rnn。共包含5000条新闻文本,整合划分出10个候选分类类别:财经、房产、家居、教育、科技、时尚、时政、体育、游戏、娱乐。

1)导入数据

通过jupyter notebook来实现,相关代码如下:

#导入相应数据包
import pandas as pd
import numpy as np
#数据的读入及读出
df_news=pd.read_table("./cnews.val.txt",names=["category","content"])
df_news.head()

从文件夹读出相应的数据,分别表示新闻数据的类别及内容,如图所示。

#数据的类别及总量
df_news.category.unique()
df_news.content.shape
#为方便后续对数据的处理,将原始表格型据结构转换成列表格式
content_list=df_news.content.values.tolist()

在这里插入图片描述
数据类别处理代码编译成功,如图所示。

在这里插入图片描述

2)数据清洗

新闻文本数据中不仅包括了中文字符,还包括了数字、英文字符、标点等,分词是中文文本分析的重要内容,正确的分词可以更好地构建模型。中文语料中词与词之间是紧密相连的,这一点不同于英文或者其他语种的语料,因此,不能像英文使用空格分词,而是使用jieba库中的分割方法。

#jieba分词
content_fenci = [] #建立一个空的
for line in content_list:
	text = jieba.lcut(line) #给每一条都分词
	if len(text) > 1 and text != '\r': #换行
		content_fenci.append(text)  #将分词后的结果放入
#content_fenci[0]   #分词后的一个样本     
df_content=pd.DataFrame({'content':content_fenci})
df_content.head()

分词后结果如图所示。

在这里插入图片描述

#导入停用词
def drop_stopwords(contents,stopwords):
	content_clean = [] #放清理后的分词
	all_words = []
	for line in contents:
		line_clean=[]
	for word in line:
		if word in stopwords:
			continue
		line_clean.append(word)
		all_words.append(str(word))
		content_clean.append(line_clean)
	return content_clean,all_words
content_clean,all_words = drop_stopwords(content_fenci,stopwords_list,)
df_clean= pd.DataFrame({'contents_clean':content_clean})
df_clean.head()

清洗后结果如图所示。

在这里插入图片描述

3)统计词频

统计文本中每个单词出现的次数,对该统计按单词频次进行排序。如图所示。

在这里插入图片描述

相关代码如下:

tf= Counter(all_words)

2. 词云构建

词云是对文本中出现频率较高的关键词予以视觉化的展现,词云过滤掉大量低频低质的文本信息,使浏览者快速阅读文本就可领略文本的主旨。

#导入背景图片后的词云
mask = imread('4.png')#读入图片
wc=wordcloud.WordCloud(font_path=font,mask=mask,background_color='white',scale=2)
#scale:按照比例进行放大画布,如设置为2,则长和宽都是原来画布的2倍
wc.generate_from_frequencies(tf)
plt.imshow(wc)  #显示词云
plt.axis('off') #关闭坐标轴
plt.show()
wc.to_file('ciyun.jpg') #保存词云

3. 关键词提取

TF-IDF是一种统计方法,字词的重要性随着它在文件中出现的次数成正比增加,但同时也会在语料库中出现的频率成反比下降,接下来通过TF-IDF算法的运用实现关键词提取。

import jieba.analyse
index = 2
#print(df_clean['contents_clean'][index])
#词之间相连
content_S_str = "".join(content_clean[index])
print(content_list[index])
print('关键词:')
print(" ".join(jieba.analyse.extract_tags(content_S_str, topK=10, withWeight=False)))

4. 语音播报

将上述提取成功的关键词通过pyttsx3转换成语音进行播报。

import pyttsx3
voice=pyttsx3.init()
voice.say(" ".join(jieba.analyse.extract_tags(content_S_str, topK=10, withWeight=False)))
print("准备语音播报.....")
voice.runAndWait()

5. LDA主题模型

LDA是一种文档主题生成模型,也称为三层贝叶斯概率模型,模型中包含词语(W)、主题(Z)和文档(theta)三层结构。文档到主题、主题到词服从多项式分布,得出每个主题都有哪些关键词组成。在实际运行中,因为单词数量多,而一篇文档的单词数是有限的,如果采用密集矩阵表示,会造成内存浪费,所以gensim内部是用稀疏矩阵的形式来表示。首先,将分词清洗后的文档,使用dictionary = corpora.Dictionary (texts) 生成词典;其次,将生成的词典转化成稀疏向量。

def create_LDA(content_clean):
	#基于文本集建立(词典),并获得特征数
    dictionary = corpora.Dictionary(content_clean)
    #基于词典,将分词列表集转换成稀疏向量集,称作语料库
    dic = len(dictionary.token2id)
    print('词典特征数:%d' % dic)
	corpus = [dictionary.doc2bow(sentence) for sentence in content_clean]
	#模型训练
	lda = gensim.models.LdaModel(corpus=corpus, id2word = dictionary,num_topics = 10,passes=10)
    #passes 训练几轮
    print(lda.print_topic(1,topn=5))
    print('-----------')
    for topic in lda.print_topics(num_topics=10, num_words = 5):
		print(topic[1])
create_LDA(content_clean)

6. 模型构建

贝叶斯分类器的原理是通过某对象的先验概率,利用贝叶斯公式计算出后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为所属类。一个mapping对象将可哈希的值映射为任意对象,映射是可变对象。目前Python中只有一种标准映射类型一字典, 用花括号表示,但是花括号中的每个元素都是一个键值对(key: value),字典中的键值对也是无序的。

df_train=pd.DataFrame({"content":content_clean,"label":df_news['category']})
#为了方便计算,把对应的标签字符类型转换为数字
#映射类型(mapping)
#非空字典
label_mapping = {"体育": 0, "娱乐": 1, "家居": 2, "房产": 3, "教育":4, "时尚": 5,"时政": 6,"游戏": 7,"科技": 8,"财经": 9}
df_train['label'] = df_train['label'].map(label_mapping)
#df_train.head()
#将每个新闻信息转换成字符串形式,CountVectorizer和TfidfVectorizer的输入为字符串
def create_words(data):
    words = []
    for index in range(len(data)):
        try:
            words.append( ' '.join(data[index]))
        except Exception:
            print(index)
    return words
#把数据分成测试集和训练集
x_train,x_test,y_train,y_test =train_test_split(df_train['content'].values,df_train['label'].values,random_state=0)   
train_words = create_words(x_train)
test_words = create_words(x_test)
#模型训练
#第一种
#CountVectorizer属于常见的特征数值计算类,是一个文本特征提取方法
#对于每个训练文本,只考虑每种词汇在该训练文本中出现的频率
vec = CountVectorizer(analyzer = 'word',max_features=4000,lowercase=False)
vec.fit(train_words)
classifier = MultinomialNB()
classifier.fit(vec.transform(train_words),y_train)
print("模型准确率:",classifier.score(vec.transform(test_words), y_test))
#第二种,TfidfVectorizer除了考量某一词汇在当前训练文本中出现的频率之外
#关注包含这个词汇的其它训练文本数目的倒数,训练文本的数量越多特征化的方法就越有优势
vectorizer = TfidfVectorizer(analyzer='word',max_features = 40000,
lowercase=False)
vectorizer.fit(train_words)
classifier.fit(vectorizer.transform(train_words),y_train)
print("模型准确率为:",classifier.score(vectorizer.transform(test_words),
    y_test))

系统测试

词云如图1所示,关键词提取如图2所示,LDA测试结果如图3所示,贝叶斯结果如图4所示。

在这里插入图片描述

图1 词云

在这里插入图片描述

图2 关键词提取

在这里插入图片描述

图3 LDA结果

在这里插入图片描述

图4 贝叶斯结果

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/66996.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot 依赖管理

Spring Boot 依赖管理 在 Spring Boot 中,依赖管理是通过 Maven 或 Gradle 进行管理的。Spring Boot 提供了一种简化的方式来管理和引入依赖项,使得构建和管理项目变得更加容易。下面是一些关于 Spring Boot 依赖管理的基本信息和示例: 使用…

list模拟实现【引入反向迭代器】

文章目录 1.适配器1.1传统意义上的适配器1.2语言里的适配器1.3理解 2.list模拟实现【注意看反向迭代器】2.1 list_frame.h2.2riterator.h2.3list.h2.4 vector.h2.5test.cpp 3.反向迭代器的应用1.使用要求2.迭代器的分类 1.适配器 1.1传统意义上的适配器 1.2语言里的适配器 容…

linux下绑定进程到指定CPU的操作方法

taskset简介 # taskset Usage: taskset [options] [mask | cpu-list] [pid|cmd [args...]] Show or change the CPU affinity of a process. Options: -a, --all-tasks operate on all the tasks (threads) for a given pid -p, --pid operate on ex…

Linux知识点 -- 进程信号(一)

Linux知识点 – 进程信号(一) 文章目录 Linux知识点 -- 进程信号(一)一、理解信号1.理解Linux信号2.信号的产生与处理3.常见的信号4.如何理解组合键变成信号5.如何理解信号被进程保存 二、信号的产生1.键盘产生2.核心转储3.系统调…

go-zero 是如何实现计数器限流的?

原文链接: 如何实现计数器限流? 上一篇文章 go-zero 是如何做路由管理的? 介绍了路由管理,这篇文章来说说限流,主要介绍计数器限流算法,具体的代码实现,我们还是来分析微服务框架 go-zero 的源…

LinearAlgebraMIT_7_Ax=0

上节课讲了向量子空间中的列空间和零空间,这节课来讲零空间的(Special solutions)特解,也就是Ax0的特解。在求解特解的核心便是使用消元法求得(row echelon form)阶梯矩阵或者(reduced row echelon form/RREF)最简矩阵。 我们接下来举一个例子&#xff…

【sonar】安装sonarQube免费社区版9.9【Linux】【docker】

文章目录 ⛺sonarQube 镜像容器⛺Linux 安装镜像🍁出现 Permission denied的异常🍁安装sonarQube 中文包🍁重启服务 ⛺代码上传到sonarQube扫描🍁java语言配置🍁配置 JS TS Php Go Python⛏️出现异常sonar-scanner.ba…

【设计模式】观察者模式

什么是观察者模式? 观察者模式(又被称为发布-订阅(Publish/Subscribe)模式,属于行为型模式的一种,它定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态…

现代C++中的从头开始深度学习:【5/8】卷积

一、说明 在上一个故事中,我们介绍了机器学习的一些最相关的编码方面,例如 functional 规划、矢量化和线性代数规划。 现在,让我们通过使用 2D 卷积实现实际编码深度学习模型来开始我们的道路。让我们开始吧。 二、关于本系列 我们将学习如何…

VS+Qt+C++旅游景区地图导航源码实例

程序示例精选 VSQtC旅游景区地图导航 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<VSQtC旅游景区地图导航>>编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c;易读。…

服务器数据恢复-RAID5上层Hyper-V虚拟机数据恢复案例

服务器数据恢复环境&#xff1a; 一台Windows Server服务器&#xff0c;部署Hyper-V虚拟化环境&#xff0c;虚拟机的硬盘文件和配置文件存放在一台DELL存储中。该存储中有一组由4块硬盘组建的RAID5阵列&#xff0c;用来存放虚拟机的数据文件&#xff0c;另外还有一块大容量硬盘…

Android Studio实现Spinner下拉列表

效果图 点击下拉列表 点击某一个下拉列表 MainActivity package com.example.spinneradapterpro;import androidx.appcompat.app.AppCompatActivity;import android.os.Bundle; import android.view.View; import android.widget.AdapterView; import android.widget.Spinn…

原型模式与享元模式:提升系统性能的利器

原型模式和享元模式&#xff0c;前者是在创建多个实例时&#xff0c;对创建过程的性能进行调优&#xff1b;后者是用减 少创建实例的方式&#xff0c;来调优系统性能。这么看&#xff0c;你会不会觉得两个模式有点相互矛盾呢&#xff1f; 在有些场景下&#xff0c;我们需要重复…

Java # Spring(2)

一、Spring事物 一、分类 编程式事物&#xff1a;代码中硬编码&#xff08;不推荐使用&#xff09; 声明式事物&#xff1a;配置文件中配置&#xff08;推荐使用&#xff09; 分类&#xff1a; 基于xml的声明式事物基于注解的声明式事物 二、隔离级别 ISOLATION_DEFAULT&…

Android 视频播放器dkplayer

列表播放如图所示&#xff1a; 一、依赖 //添加RecyclerView的依赖包implementation androidx.recyclerview:recyclerview:1.2.1// 异步加载图片依赖implementation com.squareup.picasso:picasso:2.5.2// 上拉刷新、下来加载依赖implementation com.scwang.smartrefresh:Smart…

mysql之存储过程

目录 一、mysql之存储过程的相关知识 1&#xff09;存储过程的概念 2&#xff09;存储过程的优点 二、存储过程的管理 1&#xff09;创建存储过程 基本格式&#xff1a; 2&#xff09;调用存储过程 格式&#xff1a; call 存储过程名称 3&#xff09;查看存储过程 查…

Leetcode-每日一题【剑指 Offer 13. 机器人的运动范围】

题目 地上有一个m行n列的方格&#xff0c;从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动&#xff0c;它每次可以向左、右、上、下移动一格&#xff08;不能移动到方格外&#xff09;&#xff0c;也不能进入行坐标和列坐标的数位之和大于k的格子。例…

51单片机学习--红外遥控(外部中断)

需要利用下面这个红外接收头&#xff0c;OUT口会发出红外信号对应的高低电平&#xff0c;由于发送的速度很快&#xff0c;所以需要把OUT引脚接在外部中断引脚上&#xff0c;当OUT一旦产生下降沿&#xff0c;马上进中断&#xff0c;这样响应会更及时。 外部中断引脚位于P3_2和P…

【云原生】kubernetes控制器deployment的使用

目录 ​编辑 1 Controller 控制器 1.1 什么是 Controller 1.2 常见的 Controller 控制器 1.3 Controller 如何管理 Pod 2 Deployment 2.1 创建 deployment 2.2 查看 deployment 2.3 扩缩 deployment 2.4 回滚 deployment 2.5 删除 deployment 1 Controller 控制器 …

条条大路通罗马系列—— 使用 Hiredis-cluster 连接 Amazon ElastiCache for Redis 集群

前言 Amazon ElastiCache for Redis 是速度超快的内存数据存储&#xff0c;能够提供亚毫秒级延迟来支持 实时应用程序。适用于 Redis 的 ElastiCache 基于开源 Redis 构建&#xff0c;可与 Redis API 兼容&#xff0c;能够与 Redis 客户端配合工作&#xff0c;并使用开放的 Re…