Python-OpenCV中的图像处理-图像金字塔

Python-OpenCV中的图像处理-图像金字塔

  • 图像金字塔
    • 高斯金字塔
    • 拉普拉斯金字塔
  • 金字塔图像融合

图像金字塔

  • 同一图像的不同分辨率的子图集合,如果把最大的图像放在底部,最小的放在顶部,看起来像一座金字塔,故而得名图像金字塔。
  • cv2.pyrUp():上采样
  • cv2.pyrDown():下采样
    在这里插入图片描述

高斯金字塔

高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的。顶部图像中的每个像素值等于下一层图像中 5 个像素的高斯加权平均值。这样操作一次一个 MxN 的图像就变成了一个 M/2xN/2 的图像。所以这幅图像的面积就变为原来图像面积的四分之一。这被称为 Octave。连续进行这样的操作我们就会得到一个分辨率不断下降的图像金字塔。我们可以使用函数cv2.pyrDown() 和 cv2.pyrUp() 构建图像金字塔。

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 图像金字塔 :同一图像的不同分辨率的子图集合
# 有两种:高斯金字塔(Gaussian Pyramid) 和 拉普拉斯金字塔(Pyramid)
# 高斯金字塔 每次处理后图像的面积变为原来的四分之一,也被称为Octave
# cv2.pyrDown() #分辨率降低
# cv2.pyrUp()   #分辨率增高

img = cv2.imread('./resource/opencv/image/messi5.jpg')
lower_reso = cv2.pyrDown(img)
lower_reso2 = cv2.pyrDown(lower_reso)

upper_reso = cv2.pyrUp(lower_reso2)
upper_reso2 = cv2.pyrUp(upper_reso)

cv2.imshow('img', img)
cv2.imshow('lower_reso', lower_reso)
cv2.imshow('lower_reso2', lower_reso2)
cv2.imshow('upper_reso', upper_reso)
cv2.imshow('upper_reso2', upper_reso2)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

拉普拉斯金字塔

拉普拉斯金字塔可以有高斯金字塔计算得来,公式如下:
Li = Gi - pyrUp( Gi + 1 )
式中:

  • Li:表示拉普拉斯金字塔中的第i层
  • Gi:表示高斯金字塔中的第i层
    拉普拉金字塔的图像看起来就像边界图,其中很多像素都是 0。他们经常
    被用在图像压缩中。

在这里插入图片描述
图中各标记含义如下:

  • G0、G1、G2、G3分别是高斯金字塔的第0层、第1层、第2层、第3层。
  • L0、L1、L2、分别是拉普拉斯金字塔的第0层、第1层、第2层。
  • 向下的箭头表示向下采样操作(对应cv2.pyrDown()函数)
  • 向右的箭头表示向上采样操作(对应cv2.pyrUp() 函数)
  • "+"表示加法操作
  • "-"表示减法操作

上图中的操作关系有:
向下采样:

  • G1 = cv2.pyrDown(G0)
  • G2 = cv2.pyrDown(G1)
  • G3 = cv2.pyrDown(G2)

拉普拉斯金字塔:

  • L0 = G0 - cv2.pyrUp(G1)
  • L1 = G1 - cv2.pyrUp(G2)
  • L2 = G2 - cv2.pyrUp(G3)

向上采样恢复高分辨率图像:

  • G0 = L0 + cv2.pyrUp(G1)
  • G1 = L1 + cv2.pyrUp(G2)
  • G2 = L2 + cv2.pyrUp(G3)

上述关系是通过数学运算推导得到的。例如,已知L0=G0-cv2.pyrUp(G1),将表达式右侧的cv2.pyrUp(G1)移到左侧,就得到了表达式G0 = L0 + cv2.pyrUp(G1)。除此之外,G1和G2都可以通过拉普拉斯金字塔的构造表达式得到。如之前介绍的,拉普拉斯金字塔的目的就是为了恢复高分辨率的图像。

# 拉普拉斯金字塔构建
G0 = cv2.imread("./resource/opencv/image/lena.jpg")
cv2.imshow("input image",G0)
G1=cv2.pyrDown(G0)
G2=cv2.pyrDown(G1)
G3=cv2.pyrDown(G2)
G4=cv2.pyrDown(G3)
L0 = cv2.subtract(G0,cv2.pyrUp(G1))
L1 = cv2.subtract(G1,cv2.pyrUp(G2))
L2 = cv2.subtract(G2,cv2.pyrUp(G3))
L3 = cv2.subtract(G3,cv2.pyrUp(G4))
cv2.imshow("G1",G1)
cv2.imshow("G2",G2)
cv2.imshow("G3",G3)
cv2.imshow("G4",G4)
cv2.waitKey(0)
cv2.destroyAllWindows()
import numpy as np
import cv2

# 拉普拉斯金字塔是由高斯金字塔计数得到,公式如下
# Li = Gi - PyrUP(PyrDown(Gi))
 
# 拉普拉斯金字塔图像看起来像是边界图,其中很多像素都是0,常被用在图像压缩中。

import cv2 as cv
 
if __name__ == '__main__':
    img = cv.imread("./resource/opencv/image/lena.jpg")
 
    down1 = cv.pyrDown(img)
    res = img - cv.pyrUp(down1)
 
    down2 = cv.pyrDown(down1)
    res2 = down1 - cv.pyrUp(down2)
 
    cv.imshow("img", img)
    cv.imshow("res", res)
    cv.imshow("res2", res2)
 
    cv.waitKey(0)
    cv.destroyAllWindows()

在这里插入图片描述

金字塔图像融合

import numpy as np
import cv2
import sys

# 实现上述效果的步骤如下:
# 1. 读入两幅图像,苹果和橘子
# 2. 构建苹果和橘子的高斯金字塔( 6 层)
# 3. 根据高斯金字塔计算拉普拉斯金字塔
# 4. 在拉普拉斯的每一层进行图像融合(苹果的左边与橘子的右边融合)
# 5. 根据融合后的图像金字塔重建原始图像。

A = cv2.imread('./resource/opencv/image/apple.jpg')
B = cv2.imread('./resource/opencv/image/orange.jpg')
print(A.shape)
print(B.shape)
# 生成高斯金字塔
G = A.copy()
gpA = [G]
for i in range(5):
    G = cv2.pyrDown(G)
    gpA.append(G)
    
G = B.copy()
gpB = [G]
for i in range(5):
    G = cv2.pyrDown(G)
    gpB.append(G)
# 产生Laplacian金字塔
lpA = [gpA[5]]
for i in range(5,0,-1):
    GE = cv2.pyrUp(gpA[i])
    L = cv2.subtract(gpA[i-1],GE)
    lpA.append(L)

lpB = [gpB[5]]
for i in range(5,0,-1):
    GE = cv2.pyrUp(gpB[i])
    L = cv2.subtract(gpB[i-1],GE)
    lpB.append(L)
# 合并
LS = []
for la,lb in zip(lpA,lpB):
    rows,cols,dpt = la.shape
    ls = np.hstack((la[:,0:cols//2], lb[:,cols//2:]))
    LS.append(ls)
# 重新构建图像
ls_ = LS[0]
for i in range(1,6):
    ls_ = cv2.pyrUp(ls_)
    ls_ = cv2.add(ls_, LS[i])
# 连接
real = np.hstack((A[:,:cols//2],B[:,cols//2:]))
cv2.imshow("apple",A)
cv2.imshow("orange",B)
cv2.imshow("LS",ls_)
cv2.imshow("Real",real)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/67086.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

剑指 Offer 30. 包含min函数的栈

题目描述 定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。 示例 思路 新开一个辅助栈记录不严格递增序列,栈顶元素始终为栈内的最小值,注意多个…

flask使用cookie (设置cookie与查看cookie内容)

1.flask包cookie的使用 设置cookie app.route(/set_cookie) def set_cookie():resp make_response(Setting cookie)resp.set_cookie(username, John)return resp查看cookie: app.route(/get_cookie) def get_cookie():username request.cookies.get(username)return Welco…

CSS基础介绍笔记1

官方文档 CSS指的是层叠样式(Cascading Style Sheets)地址:CSS 教程离线文档:放大放小:ctrl鼠标滚动为什么需要css:简化修改HTML元素的样式;将html页面的内容与样式分离提高web开发的工作效率&…

安装程序报错问题解决 -2147287037 <<30005>> 2203

本文如下报错适用: 一、The installer has encountered an unexpected error installing this package. Thismay indicate a problem with this package. The error code is 2203 二、错误 2203.数据库: C:\WINDOWS\Installer\inprogressinstallinfo.i…

Vue2-简介、模板语法、数据绑定、MVVM、数据代理、事件处理

🥔:成功之后就能光明正大地回望所有苦难 VUE-Day1 Vue简介1、Vue是什么?2、谁开发的? 发展历程?3、Vue的特点4、容器和实例、实例中的el和data总结 Vue模板语法插值语法指令语法 数据绑定1.单向数据绑定(v-…

微服务Ribbon-负载均衡原理

目录 一、LoadBalancerIntercepor 二、LoadBalancerClient 三、负载均衡策略IRule 四、总结 上一篇中,我们添加了LoadBalanced注解,即可实现负载均衡功能,这是什么原理呢? SpringCloud底层其实是利用了一个名为Ribbon的组件&…

企业邮箱安全对比:哪家公司的产品更可靠?

邮箱仍然是企业沟通的关键组成部分,但往往容易受到安全威胁。为了保护敏感信息,企业需要采取措施使企业邮箱更加安全。这可以通过投资先进的安全解决方案,创建限制或控制访问的策略,并定期对员工进行最佳实践培训来实现。 1、投资…

世界算力简史(下)

世界算力简史(上) 世界算力简史(中) 今天终于要完结了…… █ 1980-1990:PC时代 IBM-PC和“兼容机” 上一篇,我们说到,70年代微处理器崛起,使得个人电脑开始大量出现。 这种情况&…

AI Deep Reinforcement Learning Autonomous Driving(深度强化学习自动驾驶)

AI Deep Reinforcement Learning Autonomous Driving(深度强化学习自动驾驶) 背景介绍研究背景研究目的及意义项目设计内容算法介绍马尔可夫链及马尔可夫决策过程强化学习神经网络 仿真平台OpenAI gymTorcs配置GTA5 参数选择行动空间奖励函数 环境及软件…

Unity3d C#利用本地网页快速打开萤石云监控视频流(ezopen)实现云台,声音等控制,支持WebGL平台,替代UMP播放(含源码)

前言 之前我介绍了替代Universal?Media?PlayerUMP播放石云监控视频流(ezopen)的功能,效果还是很明显的,笔者的测试是差不多3-5秒就能打开监控画面,不过稍微遗憾的是,之前的功能是iframe打开石云提供的播放网页的形式&#xff0…

AI量化模型预测挑战赛 第二次学习笔记

有关竞赛信息以及基础baseline代码解读请看我的上一篇文章 AI量化模型预测——baseline学习笔记_寂ღ᭄秋࿐的博客-CSDN博客 在经过baseline进行详细的分析之后,接下来的方向肯定是奔着提分去的,下面我就从五个方面进行一一列出提分思路 提取更多的特征…

Linux下安装nginx (tar解压版安装)

Linux下安装nginx (tar安装) 1、下载nginx 官方下载地址https://nginx.org/en/download.html 在这里插入图片描述 2.解压 解压‘nginx-1.16.1.tar.gz’到指定目录(/usr/local/myWorkSpace)并且重命名 命令: tar -xvf nginx-1.16.1.tar.gz …

共享式以太网的争用期

在以太网中,必然会发生碰撞。   站点从发送帧开始,最多经过 2 τ 2\tau 2τ就会检测到碰撞,此时 2 τ 2\tau 2τ被称为争用期或碰撞窗口。   站点从发送帧开始,经过争用期 2 τ 2\tau 2τ这段时间还没有检测到碰撞&#xff0c…

ModaHub魔搭社区——GPTCache是如何工作的?

在线服务通常表现出数据局部性,用户经常访问流行或趋势内容。缓存系统通过存储通常访问的数据来利用这种行为,这反过来减少了数据检索时间,提高了响应时间,并减轻了后端服务器的负担。传统缓存系统通常利用新查询和缓存查询之间的精确匹配来确定请求的内容在获取数据之前是…

LeetCode 31题:下一个排列

目录 题目 思路 代码 题目 整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。 例如,arr [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1] 。 整数数组的 下一个排列 是指其整数的下一个字典序…

网络安全(黑客)工作篇

一、网络安全行业的就业前景如何? 网络安全行业的就业前景非常广阔和有吸引力。随着数字化、云计算、物联网和人工智能等技术的迅速发展,网络安全的需求持续增长。以下是网络安全行业就业前景的一些关键因素: 高需求:随着互联网的…

MFC第二十七天 通过动态链表实现游戏角色动态增加、WM_ERASEBKGND背景刷新的原理、RegisterClass注册窗口与框架程序开发

文章目录 通过动态链表实现游戏角色动态增加CMemoryDC.hCFlashDlg.hCFlashDlg.cpp WM_ERASEBKGND背景刷新的原理RegisterClass注册窗口与框架程序开发CFrameRegister 通过动态链表实现游戏角色动态增加 CMemoryDC.h #pragma once#include "resource.h"/*内存DC类简介…

即将发布的 Kibana 版本可运行 Node.js 18

作者:Thomas Watson Kibana 构建在 Node.js 框架之上。 为了确保每个 Kibana 版本的稳定性和使用寿命,我们始终将捆绑的 Node.js 二进制文件保持为最新的最新长期支持 (LTS) 版本。 当 Node.js 版本 18 升级到 LTS 时,我们开始将 Kibana 升级…

图的遍历之 深度优先搜索和广度优先搜索

深度优先搜索的图文介绍 1. 深度优先搜索介绍 图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各…

java中try-with-resources自动关闭io流

文章目录 java中try-with-resources自动关闭io流0 简要说明try-with-resources java中try-with-resources自动关闭io流 0 简要说明 在传统的输入输出流处理中,我们一般使用的结构如下所示,使用try - catch - finally结构捕获相关异常,最后不…
最新文章