STM32--SPI通信与W25Q64(1)

文章目录

  • 前言
  • SPI通信
    • 硬件电路
    • 移位过程
  • SPI时序
    • 起始与终止条件
    • 交换一个字节
  • W25Q64
    • 硬件电路
    • 框图
  • FLASH操作注意事项
  • 软件SPI读写W25Q64

前言

USART串口链接入口

I2C通信链接入口

SPI通信

SPI(Serial Peripheral Interface)是一种高速的、全双工、同步的串行通信协议。通常用于连接主控芯片和外围设备,比如传感器、存储器、显示屏等。SPI使用简单,只需要几根线就可以实现进行通信。
在这里插入图片描述

硬件电路

在这里插入图片描述
主要线路:

SCLK(时钟信号):由主设备产生,用于同步数据传输的时钟信号。
MOSI(主设备输出从设备输入):主设备将数据发送给从设备的数据线。
MISO(主设备输入从设备输出):从设备将数据发送给主设备的数据线。
SS/CS(片选信号):由主设备控制,用于选择要进行通信的特定设备。

上图中,主机连接着多个从机,但在通信时,只能对一个从机进行SPI通信,会通过选定的从机的片选信号SS从高电平置于低电平(其他没有选中的保持高电平)让主机与其通信。

移位过程

在这里插入图片描述
由于有两条传输数据线,所以SPI通信能做到同时进行发送数据和接收数据的特点。

主机和从机都由主机的波特率发生器控制着时钟信号,实现同步的传输。

首先主机会将移位寄存器的高位通过MOSI数据线传送到从机的移位寄存器的最低位;同时,从机的移位寄存器的最高位会通过MISO数据线传送到主机移位寄存器的最低位。两个移位寄存器将最高位的数据传出之后,移位寄存器就会进行向右移位,因此最低位也会腾出空间,让主机的最高位数据放到从机的最低位,从机的最低位数据放到主机的最低位。以此循环八次,就能将一个字节的数据进行转换了
在这里插入图片描述

SPI时序

起始与终止条件

起始条件:SS从高电平切换到低电平
终止条件:SS从低电平切换到高电平
在这里插入图片描述
这是片选信号,高低电平的切换代表SPI时序的开始和结束。

交换一个字节

交换一个字节(模式0)
CPOL=0:空闲状态时,SCK为低电平
CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据
在这里插入图片描述
对于SPI通信,由于是同时进行数据传输,所以称之为字节的交换。
交换字节有4个模式,不同之处就在于空闲状态SCK是高电平还是低电平;还有一个从SCK的第一个边沿还是第二个边沿移入数据,这里将介绍模式0的交换,其他同理。

首先这里说的移入数据和移出数据,是指数据的移出会先放在MOSI数据线或者是MISO数据线上,通过一定的时间再把数据放入对方的最低位。所以,只有先移出数据,才能移入数据。
而这里的却从SCK的第一个边沿就移入数据,是因为主机和从机在SS的低边沿就进行将数据移出到MOSI和MISO上,所以会在SCK的高边沿就进行数据的移入,到了SCK的低边沿就将数据移出,依次重复八次,就将一个字节交换成功了

其他模式
交换一个字节(模式1)
CPOL=0:空闲状态时,SCK为低电平
CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
这是主机向选定的从机发送一个0x06的信号,由于对于从机发送的内容不关心,所以默认为0xFF。所以一般情况下,只有我们选择读取从机的数据,MISO的数据线才会有波形变化。

W25Q64

W25Q64是一款由华邦公司推出的大容量SPI FLASH产品,其容量为64Mb(8MB)。它属于W25Q系列器件,相比普通的串行闪存硬件,在灵活性和性能方面也有更出色的表现。
W25Q64可以用于存储图片数据,字库数据、音频数据以及保存设备运行日志文件等。
该芯片将8M字节的容量分为128块,每个块包含16个扇区,每个扇区有4K字节。支持双路和四路SPI接口,具有较高的数据传输速率。
在这里插入图片描述
存储介质:Nor Flash(闪存)
时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

硬件电路

在这里插入图片描述

引脚功能
VCC、GND电源(2.7~3.6V)
CS(SS)SPI片选
CLK(SCK)SPI时钟
DI(MOSI)SPI主机输出从机输入
DO(MISO)SPI主机输入从机输出
WP写保护
HOLD数据保持

看黄色部分即可,左边是外部引脚接口,右边是芯片电路;

在引脚名上加上一横线表示接通时默认为低电平,VCC与GND连接时会有一个滤波电容进行滤波,还并联一个指示灯表示是否已经通电

HOLD数据保持:相当一个暂停键;当你写入数据一半时,要在别的设备使用SPI通信,那么在当前设备你就可以触发HOLD,当前设备的SPI时序就会保持静止,你就可以使用SPI对别的设备进行使用,当回到当前设备时,HOLD解除,会从禁止的SPI时序进行恢复。

WP写保护:可以通过设置特殊的写保护位来防止数据被修改。有助于保护重要数据免受意外的写操作。

框图

在这里插入图片描述
上面一大部分就是存储区间,将8M字节的容量分为128块,每个块包含16个扇区,每个扇区有4K字节。每个扇区还包括16个的页区,每个页区有256字节,页是最小单位。

而写入和读取都由左下角的SPI命令与控制逻辑的黑盒进行控制;
接着看到上面,是写逻辑和状态寄存器,可以通过状态寄存器来判断是否已经写入数据;
通过高压发电机来对数据进行擦除;
下面是页地址锁存器和字节地址锁存器,会对块区间通过行解码和列解码,可以判定你在哪个页区进行写入和读出;
块区域的下面是一个256字节页缓冲区,数据写入需要一定的时间,会通过缓冲区来进行缓冲。

FLASH操作注意事项

写入操作时
写入操作前,必须先进行写使能
每个数据位只能由1改写为0,不能由0改写为1
写入数据前必须先擦除,擦除后,所有数据位变为1
擦除必须按最小擦除单元进行(扇区)
连续写入多字节时,最多写入一页的数据,超过页尾位置的数据,会回到页首覆盖写入
写入操作结束后,芯片进入忙状态,不响应新的读写操作
读取操作时
直接调用读取时序,无需使能,无需额外操作,没有页的限制,读取操作结束后不会进入忙状态,但不能在忙状态时读取

软件SPI读写W25Q64

OLED代码链接入口

连接方式:
在这里插入图片描述
将数据存储在W25Q64中,通过断电测试它的存储功能;

大体思路:实现SPI通信的时序条件,接着利用SPI通信实现W25Q64时序,最后在主程序实现对FLASH的测试

MySPI.c

#include "stm32f10x.h"                  // Device header

//片选电平
void MySPI_W_SS(uint8_t Byte)
{
    GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)Byte);
}
//时钟电平
void MySPI_W_SCK(uint8_t Byte)
{
    GPIO_WriteBit(GPIOA,GPIO_Pin_5,(BitAction)Byte);
}
//主机发送到从机
void MySPI_W_MOSI(uint8_t Byte)
{
    GPIO_WriteBit(GPIOA,GPIO_Pin_7,(BitAction)Byte);
}
//从机发送到主机
uint8_t MySPI_R_MISO()
{
    return GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_6);
}

//初始化
void MySPI_Init()
{
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
    
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP; //推挽输出
    GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
    GPIO_Init(GPIOA,&GPIO_InitStructure);
    
    GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU; //上拉输入
    GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6;
    GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
    GPIO_Init(GPIOA,&GPIO_InitStructure);
    
    MySPI_W_SS(1);
    MySPI_W_SCK(0);
}
//开始
void MySPI_Start()
{
    MySPI_W_SS(0);
}
//结束
void MySPI_Stop()
{
    MySPI_W_SS(1);
}
//交换字节
uint8_t MySPI_SwapByte(uint8_t SendByte)
{
    uint8_t ReceiveByte=0x00,i;
    for(i=0;i<8;i++)
    {
        MySPI_W_MOSI(SendByte&(0x80>>i)); //主发送字节
        MySPI_W_SCK(1);
        if(MySPI_R_MISO()==1)ReceiveByte|=(0x80>>i); //主接收字节
        MySPI_W_SCK(0);
        
    }
    return ReceiveByte;
}

MySPI.h

#ifndef __MYSPI_H__
#define __MYSPI_H__

void MySPI_Init();
void MySPI_Start();
void MySPI_Stop();
uint8_t MySPI_SwapByte(uint8_t SendByte);

#endif

W25Q64_Ins.h

#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H

#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3

#define W25Q64_DUMMY_BYTE							0xFF

#endif

W25Q64.h

#ifndef __W25Q64_H__
#define __W25Q64_H__

void W25Q64_Init();
void W25Q64_ReadID(uint8_t* HID,uint16_t* SID);
void W25Q64_ReadData(uint32_t Address,uint8_t* DataArray,uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_PageProgram(uint32_t Address,uint8_t* DataArray,uint16_t Count);

#endif

W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "W25Q64_Ins.h"
#include "MySPI.h"

//初始化
void W25Q64_Init()
{
    MySPI_Init();
}
//读ID
void W25Q64_ReadID(uint8_t* HID,uint16_t* SID)
{
    MySPI_Start();
    MySPI_SwapByte(W25Q64_JEDEC_ID);
    *HID=MySPI_SwapByte(W25Q64_DUMMY_BYTE);
    *SID=MySPI_SwapByte(W25Q64_DUMMY_BYTE);
    *SID<<=8;
    *SID|=MySPI_SwapByte(W25Q64_DUMMY_BYTE);
    MySPI_Stop();
}
//写使能
void W25Q64_WriteEnable()
{
    MySPI_Start();
    MySPI_SwapByte(W25Q64_WRITE_ENABLE);
    MySPI_Stop();
}
//等待忙状态
void W25Q64_WaitBusy()
{
    MySPI_Start();
    MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);
    uint32_t count=10000;
    while((MySPI_SwapByte(W25Q64_DUMMY_BYTE)&0x01)==0x01||count)
    {
        count--;
       
    }
    
    MySPI_Stop();
}
//页编程
void W25Q64_PageProgram(uint32_t Address,uint8_t* DataArray,uint16_t Count)
{
    W25Q64_WriteEnable();
    uint16_t i;
    MySPI_Start();
    MySPI_SwapByte(W25Q64_PAGE_PROGRAM);
    MySPI_SwapByte(Address<<16);
    MySPI_SwapByte(Address<<8);
    MySPI_SwapByte(Address);
    for(i=0;i<Count;i++)
    {
        MySPI_SwapByte(DataArray[i]);
    }
    
    MySPI_Stop();
    W25Q64_WaitBusy();
}
//扇区擦除
void W25Q64_SectorErase(uint32_t Address)
{
    W25Q64_WriteEnable();
    MySPI_Start();
    MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);
    MySPI_SwapByte(Address<<16);
    MySPI_SwapByte(Address>>8);
    MySPI_SwapByte(Address);
    MySPI_Stop();
    W25Q64_WaitBusy();
}
//读数据
void W25Q64_ReadData(uint32_t Address,uint8_t* DataArray,uint16_t Count)
{
    uint16_t i;
    MySPI_Start();
    MySPI_SwapByte(W25Q64_READ_DATA);
    MySPI_SwapByte(Address<<16);
    MySPI_SwapByte(Address>>8);
    MySPI_SwapByte(Address);
    for(i=0;i<Count;i++)
    {
        DataArray[i]=MySPI_SwapByte(W25Q64_DUMMY_BYTE);
    }
    
    MySPI_Stop();
}

    


对于W25Q64来说,需要先对不同的操作先写入对应的地址,
在这里插入图片描述
在这里插入图片描述

然后根据手册,写入地址和内容;

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Buzzer.h"
#include "W25Q64.h"
#include "OLED.h"

uint8_t HID;
uint16_t SID;

uint8_t ArrayWrite[]={0xAA,0xBB,0xCC,0xDD};
uint8_t ArrayRead[4];
int main()
{
	OLED_Init();
	W25Q64_Init();
    
    OLED_ShowString(1, 1, "MID:   DID:");
	OLED_ShowString(2, 1, "W:");
	OLED_ShowString(3, 1, "R:");
    
    W25Q64_ReadID(&HID,&SID);
    OLED_ShowHexNum(1,5,HID,2);
    OLED_ShowHexNum(1,12,SID,4);
    
    W25Q64_SectorErase(0x000100);
    W25Q64_PageProgram(0x000000,ArrayWrite,4);
    
    W25Q64_ReadData(0x000000,ArrayRead,4);
    
    OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);
	OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);
	OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);
	OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);
	
	OLED_ShowHexNum(3, 3, ArrayRead[0], 2);
	OLED_ShowHexNum(3, 6, ArrayRead[1], 2);
	OLED_ShowHexNum(3, 9, ArrayRead[2], 2);
	OLED_ShowHexNum(3, 12, ArrayRead[3], 2);
    while(1)
    {
        
    }
}

可以通过改变擦除的地址和页编程的地址,以及存储的内容;来进行验证FLASH的注意事项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/90743.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java中HashMap的基本介绍和详细讲解,HashMap的遍历以及HashMap的底层源码的分析

HashMap 基本介绍 HashMap 是 Java 中的一个集合类&#xff0c;实现了 Map 接口&#xff0c;用于存储键值对&#xff08;key-value&#xff09;数据。它基于哈希表的数据结构实现&#xff0c;可以实现高效的查找、插入和删除操作。 HashMap 细节讨论 无序性&#xff1a; Has…

Python高光谱遥感数据处理与高光谱遥感机器学习方法应用

本文提供一套基于Python编程工具的高光谱数据处理方法和应用案例。 本文涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心&#xff0c;用通俗易懂的语言解释高光谱的基本概念和理论&#xff0c;旨在帮助学员深入理解科学原理。方法篇结合Python编程工具&#xff0c;专注…

【C++】list

list 1. 简单了解list2. list的常见接口3. 简单实现list4. vector和list比较 1. 简单了解list list的底层是带头双向循环列表。因此list支持任意位置的插入和删除&#xff0c;且效率较高。但其缺陷也很明显&#xff0c;由于各节点在物理空间是不连续的&#xff0c;所以不支持对…

thinkphp安装workman

需要加版本&#xff0c;版本太高了不行 composer require topthink/think-worker1.0.*

Github的使用指南

首次创建仓库 1.官网创建仓库 打开giuhub官网&#xff0c;右上角点击你的头像&#xff0c;随后点击your repositories 点击New开始创建仓库 如下图为创建仓库的选项解释 出现如下界面就可以进行后续的git指令操作了 2.git上传项目 进入需上传项目的所在目录&#xff0c;打开…

keepalived+haproxy 搭建高可用高负载高性能rabbitmq集群

一、环境准备 1. 我这里准备了三台centos7 虚拟机 主机名主机地址软件node-01192.168.157.133rabbitmq、erlang、haproxy、keepalivednode-02192.168.157.134rabbitmq、erlang、haproxy、keepalivednode-03192.168.157.135rabbitmq、erlang 2. 关闭三台机器的防火墙 # 关闭…

自动控制原理笔记-采样控制系统

目录 采样控制系统的基本概念&#xff1a; 采样过程及采样定理&#xff1a; 一、采样过程 二、采样定理&#xff08;香农采样定理、奈奎斯特采样定律&#xff09; 三、信号复现 四、零阶保持器 z变换与z反变换&#xff1a; z变换的定义 z变换基本定理 z反变换 采样系…

gorm中正确的使用json数据类型

一、说明 1、JSON 数据类型是 MySQL 5.7.8 开始支持的。在此之前&#xff0c;只能通过字符类型&#xff08;CHAR&#xff0c;VARCHAR 或 TEXT &#xff09;来保存 JSON 文档。现实中也很多人不会采用json的存储方式&#xff0c;直接定义一个字符类型,让前端转换传递进来,返回给…

HTTPS协议加密原理

目录 一、什么是HTTPS 二、什么是加密/解密 三、为什么要加密 四、常见的加密方式 1.对称加密 2. 非对称加密 五、HTTPS加密方式探讨 1.只使用对称加密 2.只使用非对称加密 3.非对称加密对称加密 4.非对称加密对称加密CA认证 六、总结 一、什么是HTTPS HTTP 协议&a…

vue3+element下拉多选框组件

<!-- 下拉多选 --> <template><div class"select-checked"><el-select v-model"selected" :class"{ all: optionsAll, hidden: selectedOptions.data.length < 2 }" multipleplaceholder"请选择" :popper-app…

git及GitHub的使用

文章目录 git在本地仓库的使用github使用创建仓库https协议连接(不推荐&#xff0c;现在用起来比较麻烦)ssh连接&#xff08;推荐&#xff09;git分支操作冲突处理忽略文件 git在本地仓库的使用 1.在目标目录下右键打开git bash here 2.创建用户名和邮箱(注&#xff1a; 下载完…

ms-tpm-20-ref 在linux下编译

1、代码地址&#xff0c; GitHub - microsoft/ms-tpm-20-ref: Reference implementation of the TCG Trusted Platform Module 2.0 specification.Reference implementation of the TCG Trusted Platform Module 2.0 specification. - GitHub - microsoft/ms-tpm-20-ref: Refe…

Nodejs-nrm:快速切换npm源 / npm官方源和其他自定义源之间切换

一、理解 Nodejs nrm Nodejs nrm 是一个管理 npm 源的工具。由于 npm 在国内的速度较慢&#xff0c;很多开发者会使用淘宝的 npm 镜像源&#xff0c;但是也会遇到一些问题&#xff0c;例如某些包在淘宝镜像源中不存在&#xff0c;或者淘宝镜像源本身也会有问题。 Nodejs nrm …

CSS scoped 属性的原理

scoped 一、scoped 是什么&#xff1f;二、实现原理 一、scoped 是什么&#xff1f; 在 Vue 组件中&#xff0c;为了使样式私有化&#xff08;模块化&#xff09;&#xff0c;不对全局造成污染&#xff0c;可以在 style 标签上添加 scoped 属性以表示它的只属于当下的模块&am…

【MOS管的作用和工作原理】

数电/模电知识学习与分享001 MOS管的作用和工作原理1、MOS管基本概念2、MOS管基本原理3、MOS管广泛作用4、MOS管特点4、参考文献 MOS管的作用和工作原理 1、MOS管基本概念 MOS管&#xff08;Metal-Oxide-Semiconductor Field-Effect Transistor&#xff09;是一种常用的半导体…

Unity 之利用 localEulerAngle与EulerAngle 控制物体旋转

文章目录 概念讲解localEulerAngle与EulerAngle的区别 概念讲解 欧拉角&#xff08;Euler Angles&#xff09;是一种常用于描述物体在三维空间中旋转的方法。它使用三个角度来表示旋转&#xff0c;分别绕物体的三个坐标轴&#xff08;通常是X、Y和Z轴&#xff09;进行旋转。这…

AI Agent在情景猜谜场景下的AgentBench基准测试

目录 AgentBench评估哪些场景? 近日,来自清华大学、俄亥俄州立大学和加州大学伯克利分校的研究者设计了一个测试工具——AgentBench,用于评估LLM在多维度开放式生成环境中的推理能力和决策能力。研究者对25个LLM进行了全面评估,包括基于API的商业模型和开源模型。 他们发现…

安卓移动应用开发实训室建设方案

一 、系统概述 安卓移动应用开发作为新一代信息技术的重点和促进信息消费的核心产业&#xff0c;已成为我国转变信息服务业的发展新热点&#xff1a;成为信息通信领域发展最快、市场潜力最大的业务领域。互联网尤其是移动互联网&#xff0c;以其巨大的信息交换能力和快速渗透能…

es的索引管理

概念 &#xff08;1&#xff09;集群&#xff08;Cluster&#xff09;&#xff1a; ES可以作为一个独立的单个搜索服务器。不过&#xff0c;为了处理大型数据集&#xff0c;实现容错和高可用性&#xff0c;ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。 &…

docker项目实战

目录 1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。 1&#xff09;拉取mysql:5.6和owncloud镜像 2&#xff09;后台运行容器 3&#xff09;通过ip:端口的方式访问owncloud 2、安装搭建私有仓库 Harbor 1&#xff09;首先准备所需包 2&#xff09;安装h…
最新文章