机器学习十大算法之七——随机森林

0 引言

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个横型,集成所有模型的建模结果,基本上所有的机器学习领域都可以看到集成学习的身影,在现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林(入门级别容易上手),梯度提升树(GBDT) , Xgboost等集成算法的身影也随处可见,可见其效果之好,应用之广。(一些工业级的算法,比如GBDT、XGBOOST、LGBM都是以决策树为积木搭建出来的)

多个模型集成后的模型叫做集成评估器,集成评估器中的每一个模型叫做基评估器,通常来说有三类集成算法:BaggingBoostingStacking。随机森林是Bagging的代表模型, 他所有的基评估器都是决策树。Bagging法中每一个基评估器是平行的,最后的结果采用平均值或者少数服从多数的原则。集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合结果,以此来获取比单个模型更好的回归或分类表现。

1 随机森林(RF)简介

一棵棵决策树构成了整个随机森林,具体构建树的数量,在scikit-learn中,用“n_estimators”这个参数来控制。在训练某棵树的时候,也不是将样本的所有特征都用来训练,而是会随机选择一部分特征用来训练,目的就是让不同的树重点关注不同的特征。在scikit-learn中,用“max_features”这个参数来控制训练每棵树选取的样本数)。

只要了解决策树的算法,那么随机森林是相当容易理解的。随机森林的算法可以用如下几个步骤概括:

  1. 用有抽样放回的方法(bootstrap)从样本集中选取n个样本作为一个训练集
  2. 用抽样得到的样本集生成一棵决策树。在生成的每一个结点:
    2.1. 随机不重复地选择d个特征。
    2.2 利用这d个特征分别对样本集进行划分,找到最佳的划分特征(可用基尼系数、增益率或者信息增益判别)。
  3. 重复步骤1到步骤2共k次,k即为随机森林中决策树的个数。
  4. 用训练得到的随机森林对测试样本进行预测,并用票选法决定预测的结果。
    下图比较直观地展示了随机森林算法(图片出自文献2):
    在这里插入图片描述

包外估计(Out-of-Bag Estimate)

在随机森林构造过程中进行有放回抽样,一部分样本选不到,这部分样本占整体样本的比重为:
lim ⁡ N − > ∞ ( 1 − 1 N ) N = 1 e \lim_{N -> \infty}(1-\frac{1}{N})^N=\frac{1}{e} N>lim(1N1)N=e1

故有36.8%的数据作为包外数据,可用作验证集。包外估计是对集成分类器泛化误差的无偏估计。

3 特征重要性评估

现实情况下,一个数据集中往往有成百上前个特征,如何在其中选择比结果影响最大的那几个特征,以此来缩减建立模型时的特征数是我们比较关心的问题。这样的方法其实很多,比如主成分分析,lasso等等。不过,这里我们要介绍的是用随机森林来对进行特征筛选。

用随机森林进行特征重要性评估的思想其实很简单,说白了就是看看每个特征在随机森林中的每颗树上做了多大的贡献,然后取个平均值,最后比一比特征之间的贡献大小。

3 随机森林优缺点

3.1 优点

  1. 随机森林机制简单,泛化能力强,可以并行实现(sklearn中n_jobs控制),因为训练时树与树之间是相互独立的;
  2. 随机森林能处理很高维度的数据(也就是很多特征的数据),并且不用做特征选择。
  3. 在训练完之后,随机森林能给出哪些特征比较重要。
  4. 相比单一决策树,能学习到特征之间的相互影响,且不容易过拟合;
  5. 能直接特征很多的高维数据,因为在训练过程中依旧会从这些特征中随机选取部分特征用来训练;
  6. 相比SVM,不是很怕特征缺失,因为待选特征也是随机选取;
  7. 训练完成后可以给出特征重要性。当然,这个优点主要来源于决策树。因为决策树在训练过程中会计算熵或者是基尼系数,越往树的根部,特征越重要。

3.2 缺点

  1. 随机森林在解决回归问题时,并没有像它在分类中表现的那么好,这是因为它并不能给出一个连续的输出。当进行回归时,随机森林不能够做出超越训练集数据范围的预测,这可能导致在某些特定噪声的数据进行建模时出现过度拟合。(PS:随机森林已经被证明在某些噪音较大的分类或者回归问题上回过拟合)。
  2. 对于许多统计建模者来说,随机森林给人的感觉就像一个黑盒子,你无法控制模型内部的运行。只能在不同的参数和随机种子之间进行尝试。
  3. 可能有很多相似的决策树,掩盖了真实的结果。
  4. 对于小数据或者低维数据(特征较少的数据),可能不能产生很好的分类。(处理高维数据,处理特征遗失数据,处理不平衡数据是随机森林的长处)。
  5. 执行数据虽然比boosting等快(随机森林属于bagging),但比单只决策树慢多了。

机器学习超详细实践攻略(10):随机森林算法详解及小白都能看懂的调参指南

利用随机森林对特征重要性进行评估

4 Sklearn中随机森林应用

sklearn.ensemble.RandomForestClassifier(
    n_estimators=10,
    criterion='gini',
    max_depth=None,
    min_samples_split=2,
    min_samples_leaf=1,
    min_weight_fraction_leaf=0.0,
    max_features="auto",
    max_leaf_nodes=None,
    min_impurity_decrease=0.0,
    min_impurity_split=None,
    bootstrap=True,
    oob_score=False,
    n_jobs=1,
    random_state=None,
    verbose=0,
    warm_start=False,
    class_weight=None
)

参数

  • n_estimators:对原始数据集进行有放回抽样生成的子数据集个数,即决策树的个数。若n_estimators太小容易欠拟合,太大不能显著的提升模型,所以n_estimators选择适中的数值,版本0.20的默认值是10,版本0.22的默认值是100。

  • criterion:分裂节点所用的标准,可选“gini”, “entropy”,默认“gini”。

  • max_depth:限制树的最大深度,超过深度的树枝将被全部剪掉。如果为None,则将节点展开,直到所有叶子都是纯净的(只有一个类),或者直到所有叶子都包含少于min_samples_split个样本。默认是None。

  • min_samples_split:拆分内部节点所需的最少样本数:如果为int,则将min_samples_split视为最小值。如果为float,则min_samples_split是一个分数,而ceil(min_samples_split * n_samples)是每个拆分的最小样本数。默认是2。

  • min_samples_leaf:在叶节点处需要的最小样本数。仅在任何深度的分割点在左分支和右分支中的每个分支上至少留下min_samples_leaf个训练样本时,才考虑。这可能具有平滑模型的效果,尤其是在回归中。如果为int,则将min_samples_leaf视为最小值。如果为float,则min_samples_leaf是分数,而ceil(min_samples_leaf * n_samples)是每个节点的最小样本数。默认是1。

  • min_weight_fraction_leaf:在所有叶节点处(所有输入样本)的权重总和中的最小加权分数。如果未提供sample_weight,则样本的权重相等。

  • max_features:寻找最佳分割时要考虑的特征数量:如果为int,则在每个拆分中考虑max_features个特征。如果为float,则max_features是一个分数,并在每次拆分时考虑int(max_features * n_features)个特征。如果为“auto”,则max_features = sqrt(n_features)。如果为“ sqrt”,则max_features = sqrt(n_features)。如果为“ log2”,则max_features = log2(n_features)。如果为None,则max_features = n_features。注意:在找到至少一个有效的节点样本分区之前,分割的搜索不会停止,即使它需要有效检查多个max_features功能也是如此。

  • max_leaf_nodes:最大叶子节点数,整数,默认为None

  • min_impurity_decrease:如果分裂指标的减少量大于该值,则进行分裂。

  • min_impurity_split:决策树生长的最小纯净度。默认是0。自版本0.19起不推荐使用:不推荐使用min_impurity_split,而建议使用0.19中的min_impurity_decrease。min_impurity_split的默认值在0.23中已从1e-7更改为0,并将在0.25中删除。

  • bootstrap:是否进行bootstrap操作,bool。默认True。如果bootstrap==True,将每次有放回地随机选取样本,只有在extra-trees中,bootstrap=False

  • oob_score:是否使用袋外样本来估计泛化精度。默认False。

  • n_jobs:并行计算数。默认是None。等于-1的时候,表示cpu里的所有core进行工作。

  • random_state:控制bootstrap的随机性以及选择样本的随机性。
    verbose:在拟合和预测时控制详细程度。默认是0。

  • class_weight:每个类的权重,可以用字典的形式传入{class_label: weight}。如果选择了“balanced”,则输入的权重为n_samples / (n_classes * np.bincount(y))。

  • ccp_alpha:将选择成本复杂度最大且小于ccp_alpha的子树。默认情况下,不执行修剪。

  • max_samples:如果bootstrap为True,则从X抽取以训练每个基本分类器的样本数。如果为None(默认),则抽取X.shape [0]样本。如果为int,则抽取max_samples样本。如果为float,则抽取max_samples * X.shape [0]个样本。因此,max_samples应该在(0,1)中。是0.22版中的新功能。

面试题

1、为什么要随机抽样训练集?
如果不进行随机抽象,每棵树的训练结果都一样,最终训练出的树的分类结果也是完全一样的
2、为什么要有放回抽样?
每棵树的训练样本都是不同的,不能保证无偏估计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/92986.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Docker部署gogs仓库

Docker部署gogs Git仓库 拉取镜像 docker pull gogs/gogs查看本地镜像 docker images启动gogs仓库服务 创建数据挂在目录 我在/root目录下创建gogs挂在目录 mkdir gogs启动gogs docker run --namegogs -d -p 10022:22 -p 10880:3000 -v /root/gogs:/data gogs/gogs10022…

破除“中台化”误区,两大新原则考核中后台

近年来,“中台化”已成为许多企业追求的目标,旨在通过打通前后台数据和业务流程,提升运营效率和创新能力。然而,在实施过程中,一些误解可能导致“中台化”未能如预期般发挥作用。本文将探讨这些误解,并提出…

兄弟,王者荣耀的段位排行榜是通过Redis实现的?

目录 一、排行榜设计方案1、数据库直接排序2、王者荣耀好友排行 二、Redis实现计数器1、什么是计数器功能?2、Redis实现计数器的原理(1)使用INCR命令实现计数器(2)使用INCRBY命令实现计数器 三、通过Redis实现“王者荣…

Pycharm链接远程mysql报错

Pycharm链接远程mysql配置及相应报错如下: 解决方法: 去服务器确认Mysql版本号: 我的Mysql为5.7.43,此时Pycharm mysql驱动为8.0版本,不匹配,所以需要根据实际的版本选择对应的驱动;选择对应的版…

【Java架构-包管理工具】-Maven私服搭建-Nexus(三)

本文摘要 Maven作为Java后端使用频率非常高的一款依赖管理工具,在此咱们由浅入深,分三篇文章(Maven基础、Maven进阶、私服搭建)来深入学习Maven,此篇为开篇主要介绍Maven私服搭建-Nexus 文章目录 本文摘要1. Nexus安装…

Mr. Cappuccino的第64杯咖啡——Spring循环依赖问题

Spring循环依赖问题 什么是循环依赖问题示例项目结构项目代码运行结果 Async注解导致的问题使用Lazy注解解决Async注解导致的问题开启Aop使用代理对象示例项目结构项目代码运行结果 Spring是如何解决循环依赖问题的原理源码解读 什么情况下Spring无法解决循环依赖问题 什么是循…

计算机组成原理学习笔记-精简复习版

一、计算机系统概述 计算机系统硬件软件 计算机硬件的发展: 第一代计算机:(使用电子管)第二代计算机:(使用晶体管)第三代计算机:(使用较小规模的集成电路)第四代计算机:(使用较大规模的集成电路) 冯诺依曼体系结构…

Kotlin协程flow的debounce参数timeoutMillis特性

Kotlin协程flow的debounce参数timeoutMillis特性 <dependency><groupId>org.jetbrains.kotlinx</groupId><artifactId>kotlinx-coroutines-core</artifactId><version>1.7.3</version><type>pom</type></dependency&…

error: can‘t find Rust compiler

操作系统 win11 pip install -r requirements.txt 报错如下 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/56/fc/a3c13ded7b3057680c8ae95a9b6cc83e63657c38e0005c400a5d018a33a7/pyreadline3-3.4.1-py3-none-any.whl (95 kB) Building wheels for collected p…

聚观早报 | 云鲸扫拖机器人J4体验;芯科科技第三代无线开发平台

【聚观365】8月24日消息 云鲸扫拖机器人J4体验 芯科科技推出第三代无线开发平台 英伟达与VMWare宣布扩大合作 万物新生&#xff08;爱回收&#xff09;2023年二季度财报 充电桩需求增长带动汽车后服务市场 云鲸扫拖机器人J4体验 家庭卫生清洁是每个人都无法回避的事情&am…

老网工的爱情故事二:从VPN到SD-WAN,爱情与技术的升华

— 前言 — 为什么爱情不能像设置VLAN一样 把不同的“IP”的人绑在一起&#xff1f; 为什么周围的事物 不能像创建ACL那样随心所欲的控制&#xff1f; 为什么相爱的人远在天涯 不能像做VPN一样拉到近在咫尺&#xff1f; 为什么你我之间没有一个边界路由呢&#xff1f; 我已经给…

ISIS路由协议

骨干区域与非骨干区域 凡是由级别2组建起来的邻居形成骨干区域&#xff1b;级别1就在非骨干区域&#xff0c;骨干区域有且只有一个&#xff0c;并且需要连续&#xff0c;ISIS在IP环境下目前不支持虚链路。 路由器级别 L1路由器只能建立L1的邻居&#xff1b;L2路由器只能建立L…

Python第三方库纵览

Python第三方库纵览 知识点 更广泛的Python计算生态&#xff0c;只要求了解第三方库的名称&#xff0c;不限于以下领域: 网络爬虫、数据分析、文本处理、数据可视化、用户图形界面、机器学习、Web开发、游戏开发等 知识导图 1、网络爬虫方向 网络爬虫是自动进行HTTP访问并捕…

spring boot 项目整合 websocket

1.业务背景 负责的项目有一个搜索功能&#xff0c;搜索的范围几乎是全表扫&#xff0c;且数据源类型贼多。目前对搜索的数据量量级未知&#xff0c;但肯定不会太少&#xff0c;不仅需要搜索还得点击下载文件。 关于搜索这块类型 众多&#xff0c;未了避免有个别极大数据源影响整…

Maven之高版本的 lombok 和 tomcat 7 插件冲突问题

高版本的 lombok 和 tomcat 7 插件冲突问题 在开发期间&#xff0c;当我们使用 tomcat7-maven-plugin 来作为运行环境运行我们项目使&#xff0c;如果我们项目中使用了 1.16.20 及以上版本的 lombok 包&#xff0c;项目启动时会报错&#xff1a; for annotations org.apache.…

ELK之LogStash介绍及安装配置

一、logstash简介 集中、转换和存储数据 Logstash 是免费且开放的服务器端数据处理管道&#xff0c;能够从多个来源采集数据&#xff0c;转换数据&#xff0c;然后将数据发送到您最喜欢的“存储库”中。 Logstash 能够动态地采集、转换和传输数据&#xff0c;不受格式或复杂度的…

完美解决Ubuntu网络故障,连接异常,IP地址一直显示127.0.0.1

终端输入ifconfig显示虚拟机IP地址为127.0.0.1&#xff0c;具体输出内容如下&#xff1a; wxyubuntu:~$ ifconfig lo: flags73<UP,LOOPBACK,RUNNING> mtu 65536inet 127.0.0.1 netmask 255.0.0.0inet6 ::1 prefixlen 128 scopeid 0x10<host>loop txqueuelen …

【VMware】CentOS 设置静态IP(Windows 宿主机)

文章目录 1. 更改网络适配器设置2. 配置虚拟网络编辑器3. 修改 CentOS 网络配置文件4. ping 测试结果 宿主机&#xff1a;Win11 22H2 虚拟机&#xff1a;CentOS-Stream-9-20230612.0 (Minimal) 1. 更改网络适配器设置 Win R&#xff1a;control 打开控制面板 依次点击&#x…

【IMX6ULL驱动开发学习】09.Linux之I2C驱动框架简介和驱动程序模板

参考&#xff1a;Linux之I2C驱动_linux i2c驱动_风间琉璃•的博客-CSDN博客​​​​​​ 目录 一、I2C驱动框架简介 1.1 I2C总线驱动 1.2 I2C设备驱动 二、I2C总线-设备-驱动模型 2.1 i2c_driver 2.2 i2c_client 2.3 I2C 设备数据收发和处理 三、Linux I2C驱动程序模板…

华为数通方向HCIP-DataCom H12-821题库(单选题:61-80)

第61题 关于 BGP 的Keepalive报文消息的描述,错误的是 A、Keepalive周期性的在两个BGP邻居之间发送 B、Keepalive报文主要用于对等路由器间的运行状态和链路的可用性确认 C、Keepalive 报文只包含一个BGP数据报头 D、缺省情况下,Keepalive 的时间间隔是180s 答案&#xff…
最新文章