【3D图像分割】基于Pytorch的VNet 3D 图像分割5(改写数据流篇)

在这篇文章:【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割2(基础数据流篇) 的最后,我们提到了:

在采用vent模型进行3d数据的分割训练任务中,输入大小是16*96*96,这个的裁剪是放到Dataset类里面裁剪下来的imagemask。但是在训练时候发现几个问题:

  1. 加载数据耗费了很长时间,从启动训练,到正式打印开始按batch循环,这段时间就有30分钟
  2. batch=64, torch.utils.data.DataLoader里面的num_workers=8,训练总是到8的倍数时候,要停顿较长时间等待
  3. 4个GPU并行训练的,GPU的利用率长时间为0,偶尔会升上去,一瞬间又为0
  4. free -m查看的内存占用,发现buffcache会逐步飙升,慢慢接近占满。

请问出现这种情况,会是哪里存在问题啊?模型是正常训练和收敛拟合的也比较好,就是太慢了。分析myDataset数据读取的代码,有几个地方可能是较为耗时,和占用内存的地方:

  1. getAnnotations 函数,需要从csv文件中获取文件名和结节对应坐标,最后存储为一个字典,这个是始终要占着内存空间的;
  2. getNpyFile_Path 函数,dataFile_pathslabelFile_paths都需要调用,有些重复了,这部分的占用是可以降低一倍的;
  3. get_annos_label 函数,也是一样的问题,有些重复了,这部分的占用是可以降低一倍的。

上面这几个函数,都是在类的__init__阶段就完成的,这种多次的循环,可能是在开始batch循环前这部分时间,耗费时间的主要原因;其次,由于重复占用内存,进一步加剧了性能降低,使得后续的训练变的比较慢。

为了解决上面的这些问题,产生了本文2.0 Dataset数据加载的版本,其最大的改动就是将原本从csv文件获取结节坐标的形式,改为从npy文件中获取。这样,image、mask、Bbox都是一一对应的单个文件了。从后续的实际训练发现,也确实是如此,解决了这个耗时的问题,让训练变的很快。

所以,只要我们将牟定的值进行精简,减少__init__阶段的内存占用,这个问题就应该可以完美解决了。所以,本篇就是遵照这个原则,尽量的在数据预处理阶段,就把能不要的就丢弃,只留下最简单的一一结构。将预处理前置,避免在构建数据阶段调用。

LUNA16数据的预处理,可以参照这里,本篇就是通过这里方式,产生的数据,如下:

  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割6(数据预处理)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割7(数据预处理)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割8(CT肺实质分割)
  • 【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割9(patch 的 crop 和 merge 操作)

一、搭设数据流框架

pytorch中,构建训练用的数据流,都遵循下面这样一个结构。其中主要的思路是这样的:

  1. __init__中,是类初始化阶段,就执行的。在这里需要牟定某个值,将训练需要的内容,都获取到,但尽量少的占用内容和花费时间;
  2. __getitem__中,会根据__init__牟定的那个值,获取到一个图像和标签信息,读取和增强等等操作,最后返回Tensor值;
  3. __len__返回的是一个epoch训练牟定值的长度。

下面就是一个简易的框架结构,留作参考,后续的构建数据流,都可以对这里补充。

class myDataset_v3(Dataset):
    def __init__(self, data_dir, isTrain=True):
        self.data = []

        if isTrain:
        	self.data  ···
        else:
        	self.data  ···

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        # ********** get file dir **********
        image, label = self.data[index]  # get whole data for one subject

        # ********** change data type from numpy to torch.Tensor **********
        image = torch.from_numpy(image).float()  
        label = torch.from_numpy(label).float()  
        return image, label

在这篇文章中,对这个类里面的参数,进行了详细的介绍,感兴趣的可以直达去学习:【BraTS】Brain Tumor Segmentation 脑部肿瘤分割3(构建数据流)

二、完善框架内容

相信通过前面6、7、8、9四篇博客的介绍,你已经将Luna16的原始数据集,处理成了一一对应的,我们训练所需要的数据形式,包括:

  1. _bboxes.npy:记录了结节中心点的坐标和半径;
  2. _clean.nrrd:CT原始图像数组;
  3. _mask.nrrd:标注文件mask数组,和_clean.nrrdshape一样;

还包括一些其他的.npy,记录的都是整个变换阶段的一些量,在训练阶段是使用不到的,这里就不展开了。最最关注的就是上面三个文件,并且是根据seriesUID一一对应的。

如果是这样的数据情况下,我们构建myDataset_v3(Dataset)数据量,思考:在__init__阶段,可以以哪个为锚点,尽量少占用内存的情况下,将所需要的图像、标注信息都可以在__getitem__阶段,依次获取到呢?

那就是seriesUID的文件名。他是可以一拖三的,并且一个列表就可以了,这样是最节省内存的方式。于是我们在__init__阶段的定义如下:

class myDataset_v3(Dataset):
    def __init__(self, data_dir, crop_size=(16, 96, 96), isTrain=False):
        self.bboxesFile_path = []
        for file in os.listdir(data_dir):
            if '_bboxes.npy' in file:
                self.bboxesFile_path.append(os.path.join(data_dir, file))

        self.crop_size = crop_size
        self.crop_size_z, self.crop_size_h, self.crop_size_w = crop_size
        self.isTrain = isTrain

然后在__len__的定义,就自然而然的知道了,如下:

    def __len__(self):
        return len(self.bboxesFile_path)

最为重要,且最难的,也就是__getitem__的定义,在这里需要做一下几件事情:

  1. 获取各个文件的路径;
  2. 获取文件对应的数据;
  3. 裁剪出目标patch
  4. 数组转成Tensor

然后,在定义__getitem__中,就发现了问题,如下:

    def __getitem__(self, index):
        bbox_path = self.bboxesFile_path[index]
        img_path = bbox_path.replace('_bboxes.npy', '_clean.nrrd')
        label_path = bbox_path.replace('_bboxes.npy', '_mask.nrrd')

        img, img_shape = self.load_img(img_path)
        label 		   = self.load_mask(label_path)
        zyx_centerCoor = self.getBboxes(bbox_path)

    def getBboxes(self, bboxFile_path):
        bboxes_array = np.load(bboxFile_path, allow_pickle=True)
        bboxes_list = bboxes_array.tolist()

        xyz_list = [[zyx[0], zyx[2], zyx[1]] for zyx in bboxes_list]

        return random.choice(xyz_list)

主要是因为一个_bboxes.npy记录的结节坐标点,并不只有一个结节。如果将获取bbox的放到__getitem__,就会发现他一次只能裁剪出一个patch,就不可能对多个结节的情况都处理到。所以我这里采用了random.choice的方式,随机的选择一个结节。

但是,这种方式是不好的,因为他会降低结节在学习过程中出现的次数,尽管是随机的,但是相当于某些类型的数据量变少了。同样学习的epoch次数下,那些只有一个结节的,就被学习的次数相对变多了。

为了解决这个问题,直接将结节数与文件名一一对应起来,这样对于每一个结节来说,机会都是均等的了。代码如下所示:

import os
import random
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
from torch.utils.data import Dataset
import nrrd
import cv2

class myDataset_v3(Dataset):
    def __init__(self, data_dir, crop_size=(16, 96, 96), isTrain=False):
        self.dataFile_path_bboxes = []
        for file in os.listdir(data_dir):
            if '_bboxes.npy' in file:
                one_path_bbox_list = self.getBboxes(os.path.join(data_dir, file))
                self.dataFile_path_bboxes.extend(one_path_bbox_list)

        self.crop_size = crop_size
        self.crop_size_z, self.crop_size_h, self.crop_size_w = crop_size
        self.isTrain = isTrain

    def __getitem__(self, index):
        bbox_path, zyx_centerCoor = self.dataFile_path_bboxes[index]

        img_path = bbox_path.replace('_bboxes.npy', '_clean.nrrd')
        label_path = bbox_path.replace('_bboxes.npy', '_mask.nrrd')

        img, img_shape = self.load_img(img_path)
        # print('img_shape:', img_shape)
        label = self.load_mask(label_path)

        # print('zyx_centerCoor:', zyx_centerCoor)

        cutMin_list = self.getCenterScope(img_shape, zyx_centerCoor)

        if self.isTrain:
            rd = random.random()
            if rd > 0.5:
                cut_list = [cutMin_list[0], cutMin_list[0]+self.crop_size_z, cutMin_list[1], cutMin_list[1]+self.crop_size_h, cutMin_list[2], cutMin_list[2]+self.crop_size_w]  ###  z,y,x
                start1, start2, start3 = self.random_crop_around_nodule(img_shape, cut_list, crop_size=self.crop_size, leftTop_ratio=0.3)
            elif rd > 0.1:
               start1, start2, start3 = self.random_crop_negative_nodule(img_shape, crop_size=self.crop_size)
            else:
                start1, start2, start3 = cutMin_list
        else:
            start1, start2, start3 = cutMin_list

        img_crop = img[start1:start1 + self.crop_size_z, start2:start2 + self.crop_size_h,
                   start3:start3 + self.crop_size_w]
        label_crop = label[start1:start1 + self.crop_size_z, start2:start2 + self.crop_size_h,
                     start3:start3 + self.crop_size_w]

        # print('before:', img_crop.shape, label_crop.shape)
        # 计算需要pad的大小
        if img_crop.shape != self.crop_size:
            pad_width = [(0, self.crop_size_z-img_crop.shape[0]), (0, self.crop_size_h-img_crop.shape[1]), (0, self.crop_size_w-img_crop.shape[2])]
            img_crop = np.pad(img_crop, pad_width, mode='constant', constant_values=0)
        if label_crop.shape != self.crop_size:
            pad_width = [(0, self.crop_size_z-label_crop.shape[0]), (0, self.crop_size_h-label_crop.shape[1]), (0, self.crop_size_w-label_crop.shape[2])]
            label_crop = np.pad(label_crop, pad_width, mode='constant', constant_values=0)

        # print('after:', img_crop.shape, label_crop.shape)
        img_crop = np.expand_dims(img_crop, 0)  # (1, 16, 96, 96)
        img_crop = torch.from_numpy(img_crop).float()

        label_crop = torch.from_numpy(label_crop).long()  # (16, 96, 96) label不用升通道维度
        return img_crop, label_crop

    def __len__(self):
        return len(self.dataFile_path_bboxes)

    def load_img(self, path_to_img):
        if path_to_img.startswith('LKDS'):
            img = np.load(path_to_img)
        else:
            img, _ = nrrd.read(path_to_img)
        img = img.transpose((0, 2, 1))      # 与xyz坐标变换对应
        return img/255.0, img.shape


    def load_mask(self, path_to_mask):
        mask, _ = nrrd.read(path_to_mask)
        mask[mask>1] = 1
        mask = mask.transpose((0, 2, 1))    # 与xyz坐标变换对应
        return mask

    def getBboxes(self, bboxFile_path):
        bboxes_array = np.load(bboxFile_path, allow_pickle=True)
        bboxes_list = bboxes_array.tolist()
        one_path_bbox_list = []
        for zyx in bboxes_list:
            xyz = [zyx[0], zyx[2], zyx[1]]
            one_path_bbox_list.append([bboxFile_path, xyz])

        return one_path_bbox_list

    def getCenterScope0(self, img_shape, zyx_centerCoor):
        cut_list = []  # 切割需要用的数
        for i in range(len(img_shape)):  # 0, 1, 2   →  z,y,x
            if i == 0:  # z
                a = zyx_centerCoor[-i - 1] - self.crop_size_z/2  # z
                b = zyx_centerCoor[-i - 1] + self.crop_size_z/2  # y,z
            else:  # y, x
                a = zyx_centerCoor[-i - 1] - self.crop_size_w/2
                b = zyx_centerCoor[-i - 1] + self.crop_size_w/2

            # 超出图像边界 1
            if a < 0:
                a = self.crop_size_z
                b = self.crop_size_w
            # 超出边界 2
            elif b > img_shape[i]:
                if i == 0:
                    a = img_shape[i] - self.crop_size_z
                    b = img_shape[i]
                else:
                    a = img_shape[i] - self.crop_size_w
                    b = img_shape[i]
            else:
                pass

            cut_list.append(int(a))
            cut_list.append(int(b))

        return cut_list

    def getCenterScope(self, img_shape, zyx_centerCoor):
        img_z, img_y, img_x = img_shape
        zc, yc, xc = zyx_centerCoor

        zmin = max(0, zc - self.crop_size_z // 3)
        ymin = max(0, yc - self.crop_size_h // 2)
        xmin = max(0, xc - self.crop_size_w // 2)

        cutMin_list = [int(zmin), int(ymin), int(xmin)]

        return cutMin_list

    def random_crop_around_nodule(self, img_shape, cut_list, crop_size=(16, 96, 96), leftTop_ratio=0.3):
        """
        :param img:
        :param label:
        :param center:
        :param radius:
        :param cut_list:
        :param crop_size:
        :param leftTop_ratio: 越大,阴性样本越多(需要考虑crop_size)
        :return:
        """
        img_z, img_y, img_x = img_shape
        crop_z, crop_y, crop_x = crop_size
        z_min, z_max, y_min, y_max, x_min, x_max = cut_list
        # print('z_min, z_max, y_min, y_max, x_min, x_max:', z_min, z_max, y_min, y_max, x_min, x_max)

        z_min = max(0, int(z_min-crop_z*leftTop_ratio))
        z_max = min(img_z, int(z_min + crop_z*leftTop_ratio))
        y_min = max(0, int(y_min-crop_y*leftTop_ratio))
        y_max = min(img_y, int(y_min+crop_y*leftTop_ratio))
        x_min = max(0, int(x_min-crop_x*leftTop_ratio))
        x_max = min(img_x, int(x_min+crop_x*leftTop_ratio))

        z_start = random.randint(z_min, z_max)
        y_start = random.randint(y_min, y_max)
        x_start = random.randint(x_min, x_max)

        return z_start, y_start, x_start

    def random_crop_negative_nodule(self, img_shape, crop_size=(16, 96, 96), boundary_ratio=0.5):
        img_z, img_y, img_x = img_shape
        crop_z, crop_y, crop_x = crop_size

        z_min = 0#crop_z*boundary_ratio
        z_max = img_z-crop_z#img_z - crop_z*boundary_ratio
        y_min = 0#crop_y*boundary_ratio
        y_max = img_y-crop_y#img_y - crop_y*boundary_ratio
        x_min = 0#crop_x*boundary_ratio
        x_max = img_x-crop_x#img_x - crop_x*boundary_ratio

        z_start = random.randint(z_min, z_max)
        y_start = random.randint(y_min, y_max)
        x_start = random.randint(x_min, x_max)

        return z_start, y_start, x_start

上述就是本次改写后新的数据流完整代码,没有加入数据增强的操作。在训练时,引入了三种多样性:

  1. 确保mask有结节目标的情况下,随机的变换结节在patch中的位置;
  2. 全图随机的进行裁剪,主要是产生负样本;
  3. 直接使用结节为中心点的方式进行裁剪。

这样做的目的,其实是考虑到结节在patch中的位置,可能会影响到最终的预测。因为最后我们在使用的推理阶段,其实是不知道结节在图像中的哪个位置的,只能遍历所有的patch,然后再将预测的结果拼接成一个完整的mask,进而对mask的处理,知道了所有结节的位置。

这就要求结节无论是出现在图像中的任何位置,都需要找到他,并且尽量少的假阳性。

这块是很少看到论文涉及到的内容,我不清楚是不是论文只关于了指标,而忘记了假阳性这样一个附加产物。还有就是这些patch的获取方式,是预先裁剪下来,直接读取patch数组的形式,进行训练的。这种也不好,多样性不够,还比较的麻烦。

这一小节还要讲的,就是getCenterScoperandom_crop_around_nodule两个函数。getCenterScope中为什么整除3,是因为多次查看,总结出来的。如果是整除2,就发现所有的结节,都偏下,这点的原因,还没有想明白。知道的求留言。

如果是一个二维的平面,已知中心点,那么找到左上角的最小值,那就应该是中心点坐标,减去二分之一的宽高。但是,在z轴也采用减去二分之一的,发现所有裁剪出来的结节就很靠下。

2

所以,这里采用了减去三分之一,让他在z轴上,往上移动了一点。这里的疑问还没有搞明白,知道的评论区求指教。

random_crop_around_nodule是控制了裁剪左上角最小值和最大值的坐标,在这个区间内随机的确定,进而使得结节的裁剪,更加的多样性。如下图所示:

我只要想让每一次的裁剪都有结节在,只需要结节左上角的坐标,落在一定的区间内即可。leftTop_ratio参数,就是用于控制左上角的点,远离左上角的距离。

这个值需要自己根据patch的大小自己决定,多次查看很重要。

三、验证数据流

构建好数据量的类函数,还不能算完。因为你不知道此时的数据流,是不是符合你要求的。所以如果能够模拟训练过程,提前看看每一个patch的结果,那就再好不过了。

本章节就是这个目的,我们把图像和mask通通打出来看看,这样就知道是否存在问题了。查看的方法也比较的简单,可以抄过去用到之后自己的项目里。

def getContours(output):
    img_seged = output.numpy().astype(np.uint8)
    img_seged = img_seged * 255

    # ---- Predict bounding box results with txt ----
    kernel = np.ones((5, 5), np.uint8)
    img_seged = cv2.dilate(img_seged, kernel=kernel)
    _, img_seged_p = cv2.threshold(img_seged, 127, 255, cv2.THRESH_BINARY)
    try:
        _, contours, _ = cv2.findContours(np.uint8(img_seged_p), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    except:
        contours, _ = cv2.findContours(np.uint8(img_seged_p), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    return contours

if __name__=='__main__':
    data_dir = r"./valid"

    dataset_valid = myDataset_v3(data_dir,  crop_size=(48, 96, 96), isTrain=False)  # 送入dataset
    valid_loader = torch.utils.data.DataLoader(dataset_valid,  # 生成dataloader
                                               batch_size=1, shuffle=False,
                                               num_workers=0)  # 16)  # 警告页面文件太小时可改为0
    print("valid_dataloader_ok")
    print(len(valid_loader))
    for batch_index, (data, target) in tqdm(enumerate(valid_loader)):
        name = dataset_valid.dataFile_path_bboxes[batch_index]
        print('name:', name)

        print('image size ......')
        print(data.shape)  # torch.Size([batch, 1, 16, 96, 96])

        print('label size ......')
        print(target.shape)  # torch.Size([2])

        # 按着batch进行显示
        for i in range(data.shape[0]):
            onePatch = data[i, 0, :, :]
            onePatch_target = target[0, :, :, :]
            print('one_patch:', onePatch.shape, np.max(onePatch.numpy()), np.min(onePatch.numpy()))
            fig, ax = plt.subplots(6, 8, figsize=[14, 16])
            for i in range(6):
                for j in range(8):
                    one_pic = onePatch[i * 4 + j]
                    img = one_pic.numpy()*255.0
                    # print('one_pic img:', one_pic.shape, np.max(one_pic.numpy()), np.min(one_pic.numpy()))

                    one_mask = onePatch_target[i * 4 + j]
                    contours = getContours(one_mask)
                    for contour in contours:
                        x, y, w, h = cv2.boundingRect(contour)
                        xmin, ymin, xmax, ymax = x, y, x + w, y + h
                        # print('contouts:', xmin, ymin, xmax, ymax)
                        cv2.drawContours(img, contour, -1, (0, 0, 255), 2)
                        # cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 0, 255),
                        #               thickness=1)

                    ax[i, j].imshow(img, cmap='gray')
                    ax[i, j].axis('off')


            # print('one_target:', onePatch.shape, np.max(onePatch.numpy()), np.min(onePatch.numpy()))
            fig, ax = plt.subplots(6, 8, figsize=[14, 16])
            for i in range(6):
                for j in range(8):
                    one_pic = onePatch_target[i * 4 + j]
                    # print('one_pic mask:', one_pic.shape, np.max(one_pic.numpy()), np.min(one_pic.numpy()))

                    ax[i, j].imshow(one_pic, cmap='gray')
                    ax[i, j].axis('off')
            plt.show()

显示出来的图像如下所示:

在这里插入图片描述
你可以多看几张,看的多了,也就顺便给验证了结节裁剪的是否有问题。同时,也可以采用训练模型,看看在训练情况下,阳性带结节的样本,和全是黑色的,没有结节的样本占到多少。这也为我们改上面的代码,提供了参考标准。

四、总结

本文其实是对前面博客数据流问题的一个总结,和找到解决问题的方法了。同时将一个验证数据量的过程给展示了出来,方便我们后续更多的其他任务,都是很有好处的。

如果你是一名初学者,我相信该收获满满。如果你是奔着项目来的,那肯定也找到了思路。数据集的差异,主要体现在前处理上,而到了训练阶段,本篇可以帮助你快速的动手。

最后,留下你的点赞和收藏。如果有问题,欢迎评论和私信。后续会将训练和验证的代码进行介绍,这部分同样是重点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/118004.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Crypto(8) BUUCTF-bbbbbbrsa1

题目描述&#xff1a; from base64 import b64encode as b32encode from gmpy2 import invert,gcd,iroot from Crypto.Util.number import * from binascii import a2b_hex,b2a_hex import randomflag "******************************"nbit 128p getPrime(nbit)…

学习视频剪辑:巧妙运用中画、底画,制作画中画,提升视频效果

随着数字媒体的普及&#xff0c;视频剪辑已经成为一项重要的技能。在视频剪辑过程中&#xff0c;制作画中画可以显著提升视频效果、信息传达和吸引力。本文讲解云炫AI智剪如何巧妙运用中画、底画批量制作画中画来提升视频剪辑水平&#xff0c;提高剪辑效率。 操作1、先执行云…

吸引人的标题公式-爆款标题

有的朋友图文或视频质量明明很不错 但数据有时候却不尽人意 这个时候就可以考虑一下是不是标题的原因 这篇总结出万能公式以供参考

解决找不到msvcp120.dll,无法继续执行代码的办法,msvcp120.dll丢失的解决办法

在使用电脑的过程中出现了“找不到msvcp120.dll,无法继续执行代码”&#xff0c;通常出现这种错误的原因是因为电脑中的msvcp120.dll文件丢失&#xff0c;但是文件丢失就会导致电脑出现软件不能打开的情况&#xff0c;也可能会导致电脑出现其他的问题&#xff0c;所以今天就给大…

通过GFlags工具来复现因为野指针、内存越界等造成的程序崩溃

系列文章目录 C程序异常调查专栏 文章目录 系列文章目录前言一、GFlags是什么&#xff1f;二、如何获取GFlags三、使用步骤1.确认GFlags是否已经安装2.以管理员权限启动Command prompt3.GFlags有效设定4.检查GFlags有效设定是否成功5.根据客户复现步骤运行程序 总结 前言 客户…

“Java与Redis的默契舞曲:优雅地连接与存储数据“

文章目录 引言1. Java连接上Redis2. Java对Redis进行存储数据2.1 存储set类型数据2.2 存储hash类型数据2.3 存储list类型数据 总结 引言 在现代软件开发中&#xff0c;数据存储和处理是至关重要的一环。Java作为一门强大的编程语言&#xff0c;与Redis这个高性能的内存数据库相…

基于Chirp窄带扩频技术的无线混合组网应用,以多角色智能计量插座作为Chirp广域基站,构建边缘计算混合无线网络

随着物联网&#xff08;IoT&#xff09;的不断发展&#xff0c;无线通信技术的需求也在不断增加。Chirp窄带扩频技术是一种具有广泛应用潜力的无线通信技术&#xff0c;它在低功耗、广域覆盖、抗干扰等方面具备独特的优势。本文介绍了如何利用磐启微Chirp技术构建ECWAN无线混合…

Python之Excel数据相关

Excel Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的电脑编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具&#xff0c;再加上成功的市场营销&#xff0c;使Excel成为最流行的个人计算机数据处理软件。在1993年&#xff0c;作为Microsof…

【漏洞复现】Metinfo6.0.0任意文件读取漏洞复现

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现代码审计漏洞点 1.5、深度利用EXP编写 1.6、漏洞挖掘1.7修复建议 1.1、漏洞描述 漏洞名称&#xff1a;MetInfo任意文件…

线性代数 第六章 二次型

一、矩阵表示 称为二次型的秩。只含有变量的平方项&#xff0c;所有混合项系数全是零&#xff0c;称为标准形&#xff1b;平方项的系数为1、-1或0&#xff0c;称为规范形。 二次型的标准形不唯一&#xff0c;可以用不用的坐标变换化二次型为标准形&#xff1b;二次型的规范形唯…

nginx配置支持PHP

前言 Nginx是通过php-fpm来通信的&#xff0c;所以需要修改的监听9000端口。 当 Nginx 配置支持 PHP 时&#xff0c;它可以将 PHP 请求转发给 PHP-FPM&#xff0c;由 PHP-FPM 处理请求并返回结果。 要配置 Nginx 支持 PHP&#xff0c;你需要在 Nginx 配置文件中添加一个 locat…

vue3+ts 项目遇到的问题和bug

1.router中使用pinia报错 pinia.mjs:1709 Uncaught Error: [&#x1f34d;]: "getActivePinia()" was called but there was no active Pinia. Are you trying to use a store before calling "app.use(pinia)"? See https://pinia.vuejs.org/core-concep…

【k8s】pod集群调度

调度约束 Kubernetes 是通过 List-Watch **** 的机制进行每个组件的协作&#xff0c;保持数据同步的&#xff0c;每个组件之间的设计实现了解耦。 用户是通过 kubectl 根据配置文件&#xff0c;向 APIServer 发送命令&#xff0c;在 Node 节点上面建立 Pod 和 Container。…

不同VLAN间的通信原理

不同VLAN间的通信原理 VLANaccess口trunk口 不同VLAN间通信原理 首先我们来看看什么是VLAN VLAN VLAN&#xff08;Virtual Local Area Network&#xff09;虚拟局域网&#xff0c;是将一个物理的局域网在逻辑上划分成多个广播域的技术。VLAN技术部署在数据链路层。 VLAN能够隔…

双十一运动健身好物推荐,这几款健身好物一定不要错过!

双十一购物狂欢节又要到了&#xff0c;又要到买买买的时候了&#xff01;相信有很多想健身的小白还在发愁不知道买啥装备&#xff1f;别急&#xff0c;三年健身达人这就给你们分享我的年度健身好物&#xff01; 第一款&#xff1a;南卡Runner Pro4s骨传导耳机 推荐理由&#…

html将复选框变为圆形样例

html将复选框变为圆形样例 说明目录使用对勾图标实现圆形复选框原复选框html代码及默认样式取消复选框未勾选前的样式新增复选框未勾选前的样式新增复选框勾选后的样式获取复选框选中后的value值 使用CSS样式写对勾图标实现圆形复选框 说明 这里记录下用原生html实现将原复选框…

新版Helix QAC 100%覆盖MISRA C++:2023

Helix QAC 2023.3预期将100%覆盖在2023年第四季度发布的新的MISRA C:2023规则。 此外&#xff0c;该版本支持更多的C20语言特性&#xff0c;并改进了Perforce Validate平台和Helix QAC与Validate的集成&#xff0c;以及其他质量改进。 编码标准覆盖率&#xff08;MISRA C:202…

【C++干货铺】内存管理new和delete

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 C语言中动态内存管理方式 malloc/calloc/realloc的区别&#xff1f; C内存管理的方式 内置类型 自定义类型 operator new 和 operator delete 函数 operato…

C++ 动态规划。。。

#include <iostream> #include <algorithm> using namespace std; // 定义一个常量&#xff0c;表示无穷大 const int INF 1e9; int dp[1000 2];// 定义一个函数&#xff0c;计算数组中某个区间的和 int sum(int arr[], int start, int end) {int s 0;for (int …
最新文章