使用 ChatGPT 辅助学习——为自己找一个老师

我们每个人都有许多标签,例如高中生、成绩中等、文科,根据这些标签我和其他拥有相同标签的人分配了相同的教程、班级和老师,这可以带来效率上的提升,因为同一份教程、老师就可以服务几十上百人,而无须为每个人定制,但也正是这样造成了忽略个性的问题。

而 ChatGPT 的强大是在于对个人需求的定制化回复。在过往遇到问题时通常使用 Google 搜索答案,在接受答案之前需要花上一点时间阅读答案所针对的问题细节、背景是否与自己的相同,否则答案可能对自己无效。例如同样是学习编程,不同的人、不同的目标所采用的学习方法都会不同,使用 ChatGPT 就可以得到更加个性化的答案。利用这一特性 ChatGPT 对我的学习产生了很大的帮助,下面从学习的不同阶段展开分享。

获取学习材料

知其然也要知其所以然,我喜欢研究某个技巧、方法之所以有效的底层原理,例如下面这个例子,在阅读学习方法的文章时了解到「人们更容易理解和记住直接相关的知识」但不明白原理是什么,于是向 ChatGPT 咨询并获得相关的实验、论文信息。通过获取新的学习材料加深自己的理解深度。

最近想找一些教程继续提升一下自己的编程能力,但大多数资源都是视频教程让我觉得很枯燥,我喜欢边学边做的课程,通过拉近理论和实践的距离我可以更快获得反馈和成就感。于是我向 ChatGPT 提交了自己的需求,最终选择了 Codewars 这个通过解题来学习和评估编程能力的网站,它不但可以反馈我的编程质量,还可以通过社区看到其他人对问题的解答方式从而学到更多。

处理学习材料

在阅读前对内容具备整体认知有助于大脑完成知识的理解。就像拼图前如果不知道最终成品的样子很难从一大堆碎片中找到头绪。我在阅读文章时会使用 ChatGPT 获取文章的概要,在正式阅读前先在大脑中建立一个知识地图。

Codewars 是一个编程学习网站,它会提供许多试题要求用户编程解答,代码跑通后会展示其他用户的答案,经常会看到许多更加简洁但是自己又看不懂的解法,此时一个个查询其中的函数不如直接询问 ChatGPT。

社区中其他人的更优解法

         请求 ChatGPT 解释代吗

进行知识存储


渐构中学习了精细加工和有效训练这两种可以帮助知识更好的存储到大脑中的方法。

精细加工

学习材料可以分为指令材料和实例材料,实例材料和我们的日常经验贴近所以比较好理解,指令材料则更加抽象,例如英语语法就是一种指令材料。精细加工提供了两种帮助我们学习指令材料的方法。

输入更多例子

通过查看更多的例子可以帮助我们理解知识,例如在学习「学习迁移」这个概念时,可以向 ChatGPT 获取例子来帮助理解。你可以试着读一下截图中 ChatGPT 提供的例子,是否以从例子中归纳出学习迁移的定义呢?

建立新知识与已有知识的链接

建立知识之间的链接可以迸发出新的洞见。例如著名的原子设计就是在化学元素和设计之间找到关联,将设计的不同单位比喻成原子、分子、有机体等进行管理,现如今已成为行业准则。在知识之间建立链接不止可以产生新的灵感而且还在大脑的信息之间建立了高速公路,让我们提取知识更加的可靠、高效。

例如在学习了信息论中「信息的等价性」原理后,似乎察觉到它和前面提到的「学习迁移」之间的联系,此时我会向 ChatGPT 咨询以验证自己的想法。

在学习
福格行为模型后,书中更多是以大家工作和生活都会遇到的通用问题进行举例,我想知道这种行为模式和自己的具体工作——设计之间的关联是什么,是否可以帮助我提升设计能力。通过回答我发现,之前构建的「创造动机、降低使用障碍」的方法论可以进一步补充,增加「提醒」环节,也就是让用户拥有使用某个产品/功能的动机,之后降低他们使用的阻碍并且要有相关的提醒刺激用户使用,避免被遗忘。

有效训练

有效训练是一种通过实际执行、答案反馈来避免能力错觉的方法。短视频中设计师教学绘画,评论区经常出现的评论就是「眼睛说会了,但手不会」,又例如上课时记了笔记,也觉得自己听懂了,但真要开始答题、向其他人解释概念就犯了难,这些都是能力错觉的例子。

前面提到我在学习编程时,会请求 ChatGPT 解释函数用法,之后为了避免自己产生能力错觉,同时还会要求 ChatGPT 提供试题来验证自己的掌握程度。

可以直接在会话界面中输入答案,ChatGPT 会判断代码是否能跑通、进行批改。这就完成了一次实际执行加答案反馈的有效训练。

同样,在学习概念知识时也可以通过用自己的话解释概念、举例来完成实际执行并向 ChatGPT 索取反馈验证自己的描述是否有误。

尾巴

20 世纪上半叶的一位著名心理学家莫尔(O.K.Moore)曾提出一种可以提升儿童教育质量的环境,它应该包含几个特性

  • 允许学习者自由探索
  • 立即告诉学习者他们行为的后果
  • 自主控制
  • 使学习者可以对不同领域的知识进行相互关联和发现

下图是基于此原则创造的环境。小孩在较少干扰的房间内操控打字机,另一个空间中成人观察孩子的行为进行对应的反馈。ChatGPT 似乎就成了我们背后的老师,而我们得以用相比百年前更低的成本拥有他。

图片来源:The Edison Responsive Environment (From Omar Khayyam Moore, Autotelic Responsive Environments and Exceptional Children, 1963).


"Hey Moore, what do you think about ChatGPT?"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/18127.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023年腾讯云轻量服务器性能评测

腾讯云轻量应用服务器性能评测 轻量应用服务器是腾讯云推出的一款开箱即用的轻量级的云服务器,轻量服务器CPU内存带宽配置更高,价格却又很便宜,很多同学认为是不是轻量应用服务器性能不行呀,轻量服务器和云服务器有什么区别&…

浪潮盒子IPBS9505-多遥控版-S905L/M2芯片-安卓4.4.2-线刷固件包

浪潮盒子IPBS9505-多遥控版-S905L/M2芯片-安卓4.4.2-线刷固件包-内有教程和短接点-当贝纯净桌面。 特点: 1、适用于对应型号的电视盒子刷机; 2、开放原厂固件屏蔽的市场安装和u盘安装apk; 3、修改dns,三网通用&…

因子挖掘框架cs优缺点介绍和使用说明

cs框架的优点和缺点 优点和ts一样,就是速度非常快缺点有好几个:必须使用根据过去一定天数计算因子值,持有一定天数之后再平衡的模式;必须使用连续的数据,如果是期货期权等需要合成连续数据。资金不足的时候不会拒单。cs框架使用方法 设计理念 计算因子由用户进行计算,因…

Springboot +Flowable,任务认领和回退(一)

一.简介 有的时候,一个任务节点会存在多个候选人,例如:张三提交一个任务,这个任务即可以由李四处理,又可以由王五处理,那么针对这种多个任务候选人的情况,该如何处理? 二.绘制流程…

项目管理-数据管理能力DCMM模型

DCMM 数据管理能力成熟度评估模型简介 DCMM(Data Management Capability Maturity Assessment Model,数据管理能力成熟度评估模型)是我国首个数据管理领域国家标准。该标准将组织对象的数据管理划分为八大能力域(数据战略、数据治…

python4delphi之初体验

最近需要做一个excel导入的工具, excel表格是python的强项,于是想delphi结合python实现 delphi环境xe2 python 3.6.6 上图可以看到,真的很爽,我在vscode写python脚本,然后给delphi调用 读取了一个excel文件,打印出了列头。 最爽的是,我在没wps,office环境的机…

( “图“ 之 二分图 ) 785. 判断二分图 ——【Leetcode每日一题】

❓785. 判断二分图 难度:中等 存在一个 无向图 ,图中有 n 个节点。其中每个节点都有一个介于 0 到 n - 1 之间的唯一编号。给你一个二维数组 graph ,其中 graph[u] 是一个节点数组,由节点 u 的邻接节点组成。形式上,…

MySQL一次大量内存消耗的跟踪

GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。GreatSQL是MySQL的国产分支版本,使用上与MySQL一致。文章来源:GreatSQL社区原创 线上使用MySQL8.0.25的数据库,通过监控发现数据库在查询一个视图(80张表的u…

xcode打包导出ipa

xcode打包导出ipa 众所周知,在开发苹果应用时需要使用签名(证书)才能进行打包安装苹果IPA,作为刚接触ios开发的同学,只是学习ios app开发内测,并没有上架appstore需求,对于苹果开发者账号认证需…

Java基础(十九)反射机制

1. 反射(Reflection)的概念 1.1 反射的出现背景 Java程序中,所有的对象都有两种类型:编译时类型和运行时类型,而很多时候对象的编译时类型和运行时类型不一致。 Object obj new String(“hello”); obj.getClass() 例如:某些变…

Pytorch对机器学习模型的安全漏洞攻击方法之Fast Gradient Sign Attack(FGSM,快速梯度符号攻击)

原论文:EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES 一般本人的习惯是先看论文熟悉它,然后代码去实现它,这样感觉要好点。因为论文讲解的比较全面和一些实验对比还有很多的引用等,另外大家知道好论文基本都是英文,所以对于英文弱点的伙伴们可能需要多花点时间去研读了…

Linux 多线程(1)线程概念与线程控制

多线程:概念、线程控制(创建、终止、等待、分离),线程安全(问题&实现),应用(生产者与消费者模型,线程池,单例模式) (重要&#xf…

6个月的测试,来面试居然要15K,我一问连5K都不值

2023年4月份我入职了深圳某家创业公司,刚入职还是很兴奋的,到公司一看我傻了,公司除了我一个自动化测试,公司的测试人员就只有2个开发3个前端1个测试还有2个UI,在粗略了解公司的业务后才发现是一个从零开始的项目&…

Java版本-招投标采购系统源代码-高效管控招采流程-降低采购成本

项目说明 随着公司的快速发展,企业人员和经营规模不断壮大,公司对内部招采管理的提升提出了更高的要求。在企业里建立一个公平、公开、公正的采购环境,最大限度控制采购成本至关重要。符合国家电子招投标法律法规及相关规范,以及…

计算机网络面试题(上)

1.TCP/IP 网络模型有哪几层? TCP/IP 网络通常是由上到下分成 4 层,分别是应用层,传输层,网络层和网络接口层。 每一层的封装格式: 网络接口层的传输单位是帧(frame),IP 层的传输单位…

构造函数的复习,析构函数,拷贝构造函数与由此关于引用的思考

TIPS 在类当中不受访问限定符的限制,在类外面才会受到限制由于内存栈区的使用习惯是先使用高地址,再使用低地址;因此比方说有两个实例化对象依次创建,并且这两个实例化对象当中都有析构函数,也就是当退出销毁的时候&a…

CompletableFutrue异步处理

异步处理 一、线程的实现方式 1. 线程的实现方式 1.1 继承Thread class ThreadDemo01 extends Thread{Overridepublic void run() {System.out.println("当前线程:" Thread.currentThread().getName());} }1.2 实现Runnable接口 class ThreadDemo02 implements …

UDP协议介绍

文章目录 一、端口号二、UDP协议1.UDP协议格式2.UDP协议的特点3.UDP缓冲区 三、UDP注意事项 一、端口号 端口号是在网络中标识一台主机上进行通信程序的唯一性的,在TCP/IP协议中,用源IP、源端口号、目的IP、目的端口号、协议号这样一个五元组来标识一个…

[工具]Pytorch-lightning的使用

Pytorch-lightning的使用 Pytorch-lightning介绍Pytorch-lightning与Pytorch的区别Pytorch-lightning框架的优势Pytorch-lightning框架 重要资源 Pytorch-lightning介绍 这里介绍Pytorch_lighting框架. Pytorch-lightning与Pytorch的区别 Pytorch-lightning可以简单的看作是…

计算机图形学 | 实验六:旋转立方体

计算机图形学 | 实验六:旋转立方体 计算机图形学 | 实验六:旋转立方体Z-缓冲GLM函数库PVM矩阵PVM矩阵的使用 华中科技大学《计算机图形学》课程 MOOC地址:计算机图形学(HUST) 计算机图形学 | 实验六:旋转…