YOLOv8改进 | 2023 | AKConv轻量级架构下的高效检测(既轻量又提点)

一、本文介绍

本文给大家带来的改进内容是AKConv是一种创新的变核卷积,它旨在解决标准卷积操作中的固有缺陷(采样形状是固定的),AKConv的核心思想在于它为卷积核提供了任意数量的参数和任意采样形状,能够使用任意数量的参数(如1, 2, 3, 4, 5, 6, 7等)来提取特征,这在标准卷积和可变形卷积中并未实现​​。AKConv能够根据硬件环境,使卷积参数的数量呈线性增减(非常适用于轻量化模型的读者)本文通过先介绍AKConv的基本网络结构和原理让大家对该卷积有一个大概的了解,然后教大家如何将该卷积添加到自己的网络结构中

(同时我修改了AKConv官方版本在训练到最后一个轮次报错和版本警告的问题RuntimeError: CUDA error: device-side assert triggered)

适用检测目标:所有的目标检测均有一定的提点(既轻量又提点)

推荐指数:⭐⭐⭐⭐⭐

专栏回顾YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

因为资源有限我发的文章都要做对比实验所以本次实验我只用了一百张图片检测的是火灾训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响

大家可以看出mAP(50)从0.288提高到了0.333(值得一提的是该卷积的GFLOPs降低了0.1左右适合轻量化的读者) 

目录

一、本文介绍

二、AKConv网络结构讲解

2.1 AKConv的主要思想和改进

2.1.1 灵活的卷积核设计

2.1.2 初始采样坐标算法

2.1.3 适应性采样位置调整

2.1.4 线性增减卷积参数的数量

三、AKConv的代码

3.1 AKConv的核心代码

四、手把手教你添加AKConv

4.1 AKConv的添加教程

4.2 AKConv的yaml文件和训练截图

4.2.1 AKConv的yaml文件

4.2.2 AKConv的训练过程截图 

五、AKConv可添加的位置

5.1 推荐AKConv可添加的位置 

5.2 图示AKConv可添加的位置 

六、本文总结


二、AKConv网络结构讲解

论文地址:官方论文地址

代码地址:官方代码地址


2.1 AKConv的主要思想和改进

AKConv的主要思想:AKConv(可变核卷积)主要提供一种灵活的卷积机制,允许卷积核具有任意数量的参数和采样形状。这种方法突破了传统卷积局限于固定局部窗口和固定采样形状的限制,从而使得卷积操作能够更加精准地适应不同数据集和不同位置的目标。

AKConv的改进点:

  1. 灵活的卷积核设计:AKConv允许卷积核具有任意数量的参数,这使得其可以根据实际需求调整大小和形状,从而更有效地适应目标的变化。

  2. 初始采样坐标算法:针对不同大小的卷积核,AKConv提出了一种新的算法来生成初始采样坐标,这进一步增强了其在处理各种尺寸目标时的灵活性。

  3. 适应性采样位置调整:为适应目标的不同变化,AKConv通过获得的偏移量调整不规则卷积核的采样位置,从而提高了特征提取的准确性。

  4. 减少模型参数和计算开销:AKConv支持线性增减卷积参数的数量,有助于在硬件环境中优化性能,尤其适合于轻量级模型的应用。

个人总结:总的来说,AKConv通过其创新的可变核卷积设计,为卷积神经网络带来了显著的性能提升。其能够根据不同的数据集和目标灵活调整卷积核的大小和形状,从而实现更高效的特征提取。

 图片展示了AKConv结构的详细示意图,并附上我个人的过程理解:

1. 输入:输入图像具有维度(C, H, W),其中C是通道数,H和W分别是图像的高度和宽度。
2. 初始采样形状:这一步是AKConv特有的,它给出了卷积核的初始采样形状。
3. 卷积操作:使用Conv2d对输入图像执行卷积操作。
4. 偏移:通过学习得到的偏移量来调整初始采样形状。这一步是AKConv的关键,允许卷积核形状动态调整以适应图像的特征。
5. 重采样:根据调整后的采样形状对特征图进行重采样。
6. 输出管道:重采样后的特征图经过重塑、再次卷积、标准化,最后通过激活函数SiLU输出最终结果。

底部的三行展示了采样坐标的变化:

  • 原始坐标:显示了卷积核在没有任何偏移的情况下的初始采样位置。
  • 偏移:展示了学习到的偏移量,这些偏移量将应用于原始坐标。
  • 修改后的坐标:应用偏移后的采样坐标。

总结:官方这个图说明了AKConv如何为任意大小的卷积分配初始采样坐标,并通过可学习的偏移调整采样形状。与原始采样形状相比,每个位置的采样形状都通过重采样进行了改变,这使得AKConv可以根据图像内容动态调整其操作,为卷积网络提供了前所未有的灵活性和适应性。


2.1.1 灵活的卷积核设计

AKConv中的灵活卷积核设计是一种创新的机制,旨在使卷积网络更加适应性和有效率。以下是其主要原理和机制的总结:

主要原理

  1. 任意参数数量:传统的卷积核通常具有固定的尺寸和形状,例如3x3或5x5的方形网格。而AKConv的核心原理是允许卷积核具有任意数量的参数。这意味着卷积核不再局限于标准的方形网格,而是可以根据图像特征和任务需求,采用更多样化和灵活的形状(如下图所示,任意参数数量)

  2. 自适应采样形状:在处理不同的图像和目标时,AKConv的卷积核能够自动调整其采样形状。这是通过引入一种新的坐标生成算法实现的,该算法能够为不同大小和形状的卷积核生成初始采样坐标(如下图所示,自适应采样形状)

工作机制

  1. 初始坐标生成:AKConv首先通过其坐标生成算法确定卷积核的初始采样位置。这些位置不再是固定不变的,而是可以根据图像中的特征和目标动态变化。

  2. 采样位置调整:为了更好地适应图像中目标的大小和形状变化,AKConv会根据目标的特点调整卷积核的采样位置。这种调整是通过添加偏移量来实现的,使得卷积操作更加灵活和适应性强。

个人总结:通过这种灵活的设计,AKConv能够有效地适应各种大小和形状的目标,提高了特征提取的准确性和效率。它在标准卷积核基础上引入了更多的灵活性和自适应性,从而使得卷积神经网络在处理复杂和多样化的图像数据时更为高效。这种灵活的卷积核设计不仅提升了模型的性能,还为减少模型参数和计算开销提供了可能,特别是在轻量级模型的应用中显示出其优势。


2.1.2 初始采样坐标算法

AKConv中的初始采样坐标算法是其核心特征之一,这个算法为AKConv的灵活性和适应性提供了基础。以下是该算法的主要原理和机制的概述:

主要原理

  1. 针对多样化尺寸的适应性:传统卷积操作通常使用固定尺寸的卷积核,这限制了其在处理不同尺寸和形状目标时的效果。AKConv的初始采样坐标算法旨在解决这一问题,通过允许卷积核适应不同大小的目标,增强其灵活性和有效性。

  2. 动态采样坐标生成:该算法能够根据目标的尺寸和形状动态生成卷积核的初始采样坐标。这种动态生成方式使卷积核能够更精确地覆盖和处理图像中的不同区域,从而提高特征提取的精度。

工作机制

  1. 适应不同目标尺寸:对于每一个卷积操作,算法首先考虑目标的尺寸。基于这一信息,它生成一组初始坐标,这些坐标定义了卷积核将要采样的位置。

  2. 灵活的坐标调整:生成的初始坐标不是固定不变的,而是可以根据图像中的特征动态调整。这意味着卷积核可以根据图像内容的不同而改变其采样策略,从而更有效地提取特征。

个人总结:通过引入这种初始采样坐标算法,AKConv能够更灵活地处理各种尺寸的目标,无论是大尺寸还是小尺寸的目标,都能得到更准确的特征提取。


2.1.3 适应性采样位置调整

AKConv的适应性采样位置调整机制是其核心之一,该机制允许卷积核基于图像内容进行动态调整。这里是对这一机制的概述:

  1. 动态采样调整:传统的卷积网络使用固定形状的卷积核在图像上滑动来提取特征,这种方法忽略了图像中对象形状和尺寸的多样性。AKConv采用一种新颖的方法,它允许卷积核的形状和位置根据图像内容动态调整,更好地匹配和覆盖目标区域。

  2. 偏移量学习:在AKConv中,卷积核的位置可以通过学习到的偏移量来调整。在训练过程中,网络学习到对于特定图像和目标最有效的偏移量,以便在采样过程中自动调整卷积核的位置。

  3. 提高特征提取准确性:通过这种自适应调整,AKConv能够更准确地对齐并提取图像中的关键特征,特别是当目标的形状和大小在不同图像中有所变化时。

个人总结:AKConv的适应性采样位置调整为卷积网络提供了前所未有的灵活性和适应性,使其能够对各种不同形状和尺寸的目标实现更精确的特征提取。


2.1.4 线性增减卷积参数的数量

AKConv通过其独特的设计减少了模型参数和计算开销实现方式如下:

1. 线性参数调整:AKConv允许卷积核的参数数量根据需要进行线性调整。这与传统卷积网络中参数数量随着卷积核尺寸平方级增长的情况形成对比。通过支持参数数量的线性调整,AKConv能够根据任务需求和硬件能力灵活地增减模型的复杂度。

2. 优化性能:在硬件资源有限的环境中,AKConv能够通过减少不必要的参数来优化性能。这样不仅减轻了对存储和计算资源的需求,还有助于加快模型的训练和推理速度,同时降低能耗。

3. 轻量级模型设计:AKConv特别适合于轻量级模型的设计,这类模型需要在保持高性能的同时,尽可能地减少参数数量。AKConv的这一特性使其成为设计紧凑而高效模型的理想选择,特别是在移动设备、嵌入式系统和物联网设备等资源受限的平台上。

总结:AKConv通过支持卷积参数的线性增减,提供了一种在不牺牲性能的前提下,降低模型参数和计算开销的有效方法。这使得AKConv不仅在实现高精度的特征提取方面表现出色,而且在实际应用中具有显著的资源效率优势。


三、AKConv的代码

3.1 AKConv的核心代码

在AKConv的官方代码中有一个版本的警告我给进行了一定的处理解决了,该代码的使用方式我们看章节四进行使用。 

(同时我修改了AKConv官方版本在训练到最后一个轮次报错和版本警告的问题RuntimeError: CUDA error: device-side assert triggered)

import torch.nn as nn
import torch
from einops import rearrange
import math


class AKConv(nn.Module):
    def __init__(self, inc, outc, num_param, stride=1, bias=None):
        super(AKConv, self).__init__()
        self.num_param = num_param
        self.stride = stride
        self.conv = nn.Sequential(nn.Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias),
                                  nn.BatchNorm2d(outc),
                                  nn.SiLU())  # the conv adds the BN and SiLU to compare original Conv in YOLOv5.
        self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)
        nn.init.constant_(self.p_conv.weight, 0)
        self.p_conv.register_full_backward_hook(self._set_lr)

    @staticmethod
    def _set_lr(module, grad_input, grad_output):
        grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
        grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))

    def forward(self, x):
        # N is num_param.
        offset = self.p_conv(x)
        dtype = offset.data.type()
        N = offset.size(1) // 2
        # (b, 2N, h, w)
        p = self._get_p(offset, dtype)

        # (b, h, w, 2N)
        p = p.contiguous().permute(0, 2, 3, 1)
        q_lt = p.detach().floor()
        q_rb = q_lt + 1

        q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
        q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)

        # clip p
        p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)

        # bilinear kernel (b, h, w, N)
        g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
        g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
        g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
        g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))

        # resampling the features based on the modified coordinates.
        x_q_lt = self._get_x_q(x, q_lt, N)
        x_q_rb = self._get_x_q(x, q_rb, N)
        x_q_lb = self._get_x_q(x, q_lb, N)
        x_q_rt = self._get_x_q(x, q_rt, N)

        # bilinear
        x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
                   g_rb.unsqueeze(dim=1) * x_q_rb + \
                   g_lb.unsqueeze(dim=1) * x_q_lb + \
                   g_rt.unsqueeze(dim=1) * x_q_rt

        x_offset = self._reshape_x_offset(x_offset, self.num_param)
        out = self.conv(x_offset)

        return out

    # generating the inital sampled shapes for the AKConv with different sizes.
    def _get_p_n(self, N, dtype):
        base_int = round(math.sqrt(self.num_param))
        row_number = self.num_param // base_int
        mod_number = self.num_param % base_int
        p_n_x, p_n_y = torch.meshgrid(
            torch.arange(0, row_number),
            torch.arange(0, base_int), indexing='xy')
        p_n_x = torch.flatten(p_n_x)
        p_n_y = torch.flatten(p_n_y)
        if mod_number > 0:
            mod_p_n_x, mod_p_n_y = torch.meshgrid(
                torch.arange(row_number, row_number + 1),
                torch.arange(0, mod_number),indexing='xy')

            mod_p_n_x = torch.flatten(mod_p_n_x)
            mod_p_n_y = torch.flatten(mod_p_n_y)
            p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))
        p_n = torch.cat([p_n_x, p_n_y], 0)
        p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)
        return p_n

    # no zero-padding
    def _get_p_0(self, h, w, N, dtype):
        p_0_x, p_0_y = torch.meshgrid(
            torch.arange(0, h * self.stride, self.stride),
            torch.arange(0, w * self.stride, self.stride),indexing='xy')

        p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)

        return p_0

    def _get_p(self, offset, dtype):
        N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)

        # (1, 2N, 1, 1)
        p_n = self._get_p_n(N, dtype)
        # (1, 2N, h, w)
        p_0 = self._get_p_0(h, w, N, dtype)
        p = p_0 + p_n + offset
        return p

    def _get_x_q(self, x, q, N):
        b, h, w, _ = q.size()
        padded_w = x.size(3)
        c = x.size(1)
        # (b, c, h*w)
        x = x.contiguous().view(b, c, -1)

        # (b, h, w, N)
        index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y
        # (b, c, h*w*N)

        index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)

        # 根据实际情况调整
        index = index.clamp(min=0, max=x.shape[-1] - 1)

        x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)

        return x_offset

    #  Stacking resampled features in the row direction.
    @staticmethod
    def _reshape_x_offset(x_offset, num_param):
        b, c, h, w, n = x_offset.size()
        # using Conv3d
        # x_offset = x_offset.permute(0,1,4,2,3), then Conv3d(c,c_out, kernel_size =(num_param,1,1),stride=(num_param,1,1),bias= False)
        # using 1 × 1 Conv
        # x_offset = x_offset.permute(0,1,4,2,3), then, x_offset.view(b,c×num_param,h,w)  finally, Conv2d(c×num_param,c_out, kernel_size =1,stride=1,bias= False)
        # using the column conv as follow, then, Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias)

        x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')
        return x_offset


四、手把手教你添加AKConv

4.1 AKConv的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

这个卷积也可以放在C2f和Bottleneck中进行使用可以即插即用,个人觉得放在Bottleneck中效果比较好。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头


4.2 AKConv的yaml文件和训练截图

4.2.1 AKConv的yaml文件

下面的配置文件为我修改的AKConv的位置。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, AKConv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, AKConv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, AKConv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, AKConv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9


# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, AKConv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, AKConv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 AKConv的训练过程截图 

下面是添加了AKConv的训练截图。

(最近有人说我改的代码是没有发全的,我不知道这群人是怎么说出这种话的,希望大家如果用我的代码成功的可以在评论区支持一下,我也好发更多的改进毕竟免费给大家看。同时有问题皆可在评论区留言我看到都会回复) 

​​​


五、AKConv可添加的位置

5.1 推荐AKConv可添加的位置 

AKConv是一种即插即用的模块

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。

5.2 图示AKConv可添加的位置 

2949694815404620bdfb5875286c8e73.png​​​


六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

3d51a0611af1442f833362eaf18fbae2.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/216296.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FreeRTOS-软件定时器

软件定时器 在FreeRTOS中可以设置无数个软件定时器,都是基于系统滴答中断。 使用软件定时器需要指定时间:启动定时器和运行回调函数。启动定时器和运行回调函数的间隔为定时器的周期。 使用软件定时器需要指定类型:一次性(回调函数…

优维产品最佳实践第17期:善用控制台

「 背 景 」 遇到页面报错时,是不是感到困扰,不知如何解决? 页面响应缓慢时,是否感到迷茫,不清楚从何入手排查? 面对主机高负载时,是不是觉得确认异常根因很有挑战? 本期最佳实践…

变配电智能监控系统

变配电智能监控系统是一种能够实时监测电力变压器和配电柜、配电箱运行状态的智能设备。这种系统利用先进的传感器和数据通信技术,能够实时监测电力设备的运行状态,包括电压、电流、温度、湿度等参数,并且能够对这些数据进行处理和分析&#…

新媒体营销模拟实训室解决方案

一、引言 随着互联网的发展,新媒体已成为企业进行营销和品牌推广的重要渠道。然而,对于许多企业来说,如何在新媒体上进行有效的营销仍是一大挑战。为了解决这个问题,我们推出了一款新媒体营销模拟实训室解决方案,以帮…

焊接专业个人简历(通用25篇)

如果大家想在焊接行业的求职中脱颖而出,轻松斩获心仪职位,参考这25篇通用的焊接专业个人简历案例,无论您是初学者还是资深焊工,都能从中找到适合自己的简历内容。参考这些简历,让您的求职之路更加顺畅。 焊接专业个人…

Web漏洞分析-SQL注入XXE注入(中上)

随着互联网的不断普及和Web应用的广泛应用,网络安全问题愈发引起广泛关注。在网络安全领域中,SQL注入和XXE注入是两个备受关注的话题,也是导致许多安全漏洞的主要原因之一。本博客将深入研究这两种常见的Web漏洞,带您探寻背后的原…

C++基础 -38- 模板函数的局限性

模板函数无法对自定义数据类型进行操作(如类) 这个时候我们重载一个函数来匹配操作即可 #include "iostream"using namespace std;class base { public:base(int a) : a(a) {}int a; };template <class T, class T1> bool compare(T a, T1 b) {if (a > b…

蓝桥杯-03-蓝桥杯学习计划

蓝桥杯-03-蓝桥杯学习计划 参考资料 相关文献 报了蓝桥杯比赛&#xff0c;几乎零基础&#xff0c;如何准备&#xff0c;请大牛指导一下。谢谢&#xff1f; 蓝桥杯2022各组真题汇总(完整可评测) 基础学习 C语言网 ACM竞赛入门,蓝桥杯竞赛指南 廖雪峰的官方官网 算法题单 洛谷…

【JavaEE】单例模式

作者主页&#xff1a;paper jie_博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文于《JavaEE》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精力)打造&…

爬虫概念、基本使用及一个类型和六个方法(一)

目录 一、爬虫简介 1.什么是爬虫 2.爬虫的核心 3.爬虫的用途 4.爬虫的分类 5.反爬手段 二、Urllib基本使用 1.导入我们需要的包 2.定义一个url 3.模拟浏览器向服务器发送请求 4.获取响应中的页面的源码 5.打印数据 三、一个类型和六个方法 1.定义url&#xff0c;并…

C++初阶 | [七] string类(上)

摘要&#xff1a;标准库中的string类的常用函数 C语言中&#xff0c;字符串是以\0结尾的一些字符的集合&#xff0c;为了操作方便&#xff0c;C标准库中提供了一些str系列的库函数&#xff0c; 但是这些库函数与字符串是分离开的&#xff0c;不太符合OOP(面向对象)的思想&#…

【vue】vue-slick-carousel插件,实现横向滚动列表手动左右滚动(也可设置为自动滚动)

需求&#xff1a;图片列表横向滚动的时候&#xff0c;隐藏原始滚动条&#xff0c;通过左右箭头控制滚动条往左右按一定的步长移动。 el-carousel走马灯一滚动就是一屏&#xff0c;不适合我的需求 在npm官网搜vue-slick-carousel&#xff0c;查看更详细的配置 vue-slick-caro…

解决xshell连接诶树莓派中文乱码的问题

系统版本 解决办法 在根目录下找到 /etc/profile 修改profile文件,添加以下两行.以便重启之后也能生效: export LANGzh_CN.utf8 export LC_ALLzh_CN.utf8注意: /etc/profile的修改需要root权限才能修改! 在xshell的编码格式改为UTF-8

全志T527设置gpio口输出高电平实际输出低电平

前言 在调试T527的时候&#xff0c;主板另外添加了gpio口去控制usb口的电源开关&#xff0c;软件上面需要在内核运行的时候将gpio口设置输出高电平&#xff0c;usb口才可以正常使用。改好系统固件后&#xff0c;升级发现&#xff0c;机器开机动画过程中可以控制gpio口去打开us…

竞赛选题YOLOv7 目标检测网络解读

文章目录 0 前言1 yolov7的整体结构2 关键点 - backbone关键点 - head3 训练4 使用效果5 最后 0 前言 世界变化太快&#xff0c;YOLOv6还没用熟YOLOv7就来了&#xff0c;如果有同学的毕设项目想用上最新的技术&#xff0c;不妨看看学长的这篇文章&#xff0c;学长带大家简单的…

[C国演义] 第二十三章

第二十三章 两个字符串的最小ASCLL删除和最长重复子数组 两个字符串的最小ASCLL删除和 力扣链接 求 删除字符的ASCLL和的最小值 ⇒ 正难则反 ⇒ 求公共子序列的ASCLL和的最大值 两个数组的dp问题 ⇒ 分区间讨论 ⇒ dp[i][j] -- nums1数组的[0, i] 区间 和 nums2数组的[0, j] …

《opencv实用探索·九》中值滤波简单理解

1、引言 均值滤波、方框滤波、高斯滤波&#xff0c;都是线性滤波方式。由于线性滤波的结果是所有像素值的线性组合&#xff0c;因此含有噪声的像素也会被考虑进去&#xff0c;噪声不会被消除&#xff0c;而是以更柔和的方式存在。这时使用非线性滤波效果可能会更好。中值滤波是…

手搓图片滑动验证码_JavaScript进阶

手搓图片滑动验证码 背景代码效果图展示网站 背景 在做前端项目开发的时候&#xff0c;少不了登录注册部分&#xff0c;既然有登录注册就少不了机器人验证&#xff0c;验证的方法有很多种&#xff0c;比如短信验证码、邮箱验证码、图片滑动、图片验证码等。 由于鄙人在开发中…

“团团活力圈”—“玩转柔力球 青春展风采”青少年柔力球体验活动

柔力球项目是中华优秀传统文化创造性转化、创新性发展的成功典范&#xff0c;它融合了传统太极运动方式与现代竞技双重特征于一体&#xff0c;强调内外双修&#xff0c;是一项集健身性、竞技性、表演性为一体的极富中华民族特色的体育运动。 为进一步促进柔力球运动在青少年人…

RK3588 Yolov5 部署进行目标识别

一、环境说明&#xff1a; 1、上位机 主机配置&#xff1a;win10&#xff08;强制要求win 10&#xff09;OS专业版 22H2 虚拟化软件&#xff1a;VMware pro 17.0.2&#xff1b; 虚拟机系统&#xff1a;Ubuntu20.04.1&#xff08;要求>18.0&#xff09;&#xff1b;x86-64位…
最新文章