时间序列预测 — LSTM实现多变量多步负荷预测(Tensorflow):多输入多输出

目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

​1.3 缺失值分析

2 构造训练数据

3 LSTM模型训练

4 LSTM模型预测

4.1 分量预测

4.2 可视化


1 数据处理

1.1 导入库文件

import time
import datetime
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt  
from sampen import sampen2  # sampen库用于计算样本熵
from vmdpy import VMD  # VMD分解库
from itertools import cycle

import tensorflow as tf 
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, LSTM, GRU, Reshape, BatchNormalization
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam

# 忽略警告信息
import warnings
warnings.filterwarnings('ignore'))  
plt.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
plt.rcParams['axes.unicode_minus'] = False  # 显示负号
plt.rcParams.update({'font.size':18})  #统一字体字号

1.2 导入数据集

实验数据集采用数据集6:澳大利亚电力负荷与价格预测数据(下载链接),包括数据集包括日期、小时、干球温度、露点温度、湿球温度、湿度、电价、电力负荷特征,时间间隔30min。

from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):
    cycol = cycle('bgrcmk')
    cols = list(data.columns)
    fig, axes = plt.subplots(row, col, figsize=(16, 4))
    fig.tight_layout()
    if row == 1 and col == 1:  # 处理只有1行1列的情况
        axes = [axes]  # 转换为列表,方便统一处理
    for i, ax in enumerate(axes.flat):
        if i < len(cols):
            ax.plot(data.iloc[:,i], c=next(cycol))
            ax.set_title(cols[i])
        else:
            ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图
    plt.subplots_adjust(hspace=0.6)
    plt.show()

visualize_data(data_raw.iloc[:,2:], 2, 3)

单独查看部分负荷数据,发现有较强的规律性。

​1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

进一步统计缺失值

data_raw.isnull().sum()

2 构造训练数据

构造数据前先将数据变为数值类型

data_load = data_raw.iloc[:,2:].values

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 48*7 #构造x,为72个数据,表示每次用前72个数据作为一段
predict_steps = 6 #构造y,为12个数据,表示用后12个数据作为一段
length = 48 #预测多步,预测96个数据,每次预测96个,想想要怎么构造预测才能满足96?
feature_num = 6 #特征个数

通过前timesteps行历史数据预测后面predict_steps个数据,需要对数据集进行滚动划分(也就是前timesteps行的数据和后predict_steps行的数据训练,后面预测时就可通过timesteps行数据预测未来的predict_steps行数据)。这里需要注意的是,因为是多变量预测多变量,特征就是标签(例如,前5行[干球温度、露点温度、湿球温度、电价、电力负荷]预测第6行[干球温度、露点温度、湿球温度、电价、电力负荷],划分数据集时,就用前5行当做train_x,第6行作为train_y,此时的train_y有多列,而不是只有1列)。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx, datasety=None, timesteps=96*7, predict_size=12):
    datax = []  # 构造x
    datay = []  # 构造y
    for each in range(len(datasetx) - timesteps - predict_size):
        x = datasetx[each:each + timesteps]
        # 判断是否是单变量分解还是多变量分解
        if datasety is not None:
            y = datasety[each + timesteps:each + timesteps + predict_size]
        else:
            y = datasetx[each + timesteps:each + timesteps + predict_size]
        datax.append(x)
        datay.append(y)
    return datax, datay

​数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型(变量和多变量的归一化不同,多变量归一化需要将X和Y分开归一化,不然会出现信息泄露的问题),此时的归一化相当于是单变量归一化,函数的定义如下:

# 数据归一化操作
def data_scaler(datax, datay=None, timesteps=36, predict_steps=6):
    # 数据归一化操作
    scaler1 = MinMaxScaler(feature_range=(0, 1))   
    datax = scaler1.fit_transform(datax)
    # 用前面的数据进行训练,留最后的数据进行预测
    # 判断是否是单变量分解还是多变量分解
    if datay is not None:
        scaler2 = MinMaxScaler(feature_range=(0, 1))
        datay = scaler2.fit_transform(datay)
        trainx, trainy = create_dataset(datax, datay, timesteps, predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, scaler2
    else:
        trainx, trainy = create_dataset(datax, timesteps=timesteps, predict_size=predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, None

然后分解的数据进行划分和归一化。通过前7天的48*7行数据预测后1天的数据48个,需要对数据集进行滚动划分(也就是前48*7行的数据和后6行的数据训练,后面预测时就可通过48*7行数据测未来的6行标签,然后将6行预测值添加到历史数据中,历史数据变为48*7+6个,再取出后48*7行数据进行预测,得到6行预测值,滚动进行预测直到预测完成,注意此时的预测值是行而不是个)

trainx, trainy, scalerx, scalery = data_scaler(data_load, timesteps=timesteps, predict_steps=predict_steps)

3 LSTM模型训练

首先划分训练集、测试集、验证数据:

train_x = trainx[:int(trainx.shape[0] * 0.8)]
train_y = trainy[:int(trainy.shape[0] * 0.8)]
test_x = trainx[int(trainx.shape[0] * 0.8):]
test_y = trainy[int(trainy.shape[0] * 0.8):]
test_x.shape, test_y.shape, train_x.shape, train_y.shape

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本(建议使用GPU进行训练)。

# 搭建LSTM训练函数
def LSTM_model_train(trainx, trainy, valx, valy, timesteps, predict_steps):
    # 调用GPU加速
    gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
    for gpu in gpus:
        tf.config.experimental.set_memory_growth(gpu, True)

    # 搭建LSTM模型
    start_time = datetime.datetime.now()
    model = Sequential()
    model.add(LSTM(128, input_shape=(timesteps, trainx.shape[2]), return_sequences=True))
    model.add(BatchNormalization())  # 添加BatchNormalization层
    model.add(Dropout(0.2))
    model.add(LSTM(64, return_sequences=False))
    model.add(Dense(predict_steps * trainy.shape[2]))
    model.add(Reshape((predict_steps, trainy.shape[2])))

    # 使用自定义的Adam优化器
    opt = Adam(learning_rate=0.001)
    model.compile(loss="mean_squared_error", optimizer=opt)
    
    # 添加早停和模型保存的回调函数
    es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)
    mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True)

    # 训练模型,这里我假设你有一个验证集(valx, valy)
    history = model.fit(trainx, trainy, validation_data=(valx, valy), epochs=50, batch_size=64, callbacks=[es, mc])

    # 记录训练损失
    loss_history = history.history['loss']

    end_time = datetime.datetime.now()
    running_time = end_time - start_time

    return model, loss_history, running_time

然后进行训练,将训练的模型、损失和训练时间保存。

#模型训练
model, loss_history, running_time = LSTM_model_train(train_x, train_y, test_x, test_y, timesteps, predict_steps)
# 将模型保存为文件
model.save('lstm_model.h5')

训练损失可视化

plt.figure(dpi=100, figsize=(14, 5))
plt.plot(loss_history, markevery=5)

4 LSTM模型预测

4.1 分量预测

下面介绍文章中最重要,也是真正没有未来特征的情况下预测未来标签的方法。整体的思路也就是取出预测前48*7行数据预测未来的6行数据,然后见6行数据添加进历史数据,再预测6行数据,滚动预测。因为每次只能预测6行数据,但是我要预测48个数据,所以采用的就是循环预测的思路。每次预测的6行数据,添加到数据集中充当预测x,然后在预测新的6行y,再添加到预测x列表中,如此往复,最终预测出48行。(注意多变量预测多变量预测的是多列,预测单变量只有一列)

# #滚动predict
# #因为每次只能预测6个数据,但是我要预测6个数据,所以采用的就是循环预测的思路。
# #每次预测的6个数据,添加到数据集中充当预测x,然后在预测新的6个y,再添加到预测x列表中,如此往复,最终预测出48个点。
def predict_using_LSTM(model, data, timesteps, predict_steps, feature_num, length, scaler):
    predict_xlist = np.array(data).reshape(1, timesteps, feature_num) 
    predict_y = np.array([]).reshape(0, feature_num)  # 初始化为空的二维数组
    print('predict_xlist', predict_xlist.shape)
    
    while len(predict_y) < length:
        # 从最新的predict_xlist取出timesteps个数据,预测新的predict_steps个数据
        predictx = predict_xlist[:,-timesteps:,:]
        # 变换格式,适应LSTM模型
        predictx = np.reshape(predictx, (1, timesteps, feature_num)) 
        print('predictx.shape', predictx.shape)
        
        # 预测新值
        lstm_predict = model.predict(predictx)
        print('lstm_predict.shape', lstm_predict.shape)
        
        # 滚动预测
        # 将新预测出来的predict_steps个数据,加入predict_xlist列表,用于下次预测
        print('predict_xlist.shape', predict_xlist.shape)
        predict_xlist = np.concatenate((predict_xlist, lstm_predict), axis=1)
        print('predict_xlist.shape', predict_xlist.shape)
        
        # 预测的结果y,每次预测的6行数据,添加进去,直到预测length个为止
        lstm_predict = scaler.inverse_transform(lstm_predict.reshape(predict_steps, feature_num))
        predict_y = np.concatenate((predict_y, lstm_predict), axis=0)
        print('predict_y', predict_y.shape)
        
    return predict_y

然后对数据进行预测,得到预测结果。

from tensorflow.keras.models import load_model
model = load_model('best_model.h5')
pre_x = scalerx.fit_transform(data_load[-48*8:-48])
pre_y = data_load[-48:,-1]
y_predict = predict_using_LSTM(model, pre_x, timesteps, predict_steps, feature_num, length, scalerx)

4.2 可视化

对预测的结果进行可视化并计算误差。

# 预测并计算误差和可视化
def error_and_plot(y_true,y_predict):
    # 计算误差
    r2 = r2_score(y_true, y_predict)
    rmse = mean_squared_error(y_true, y_predict, squared=False)
    mae = mean_absolute_error(y_true, y_predict)
    mape = mean_absolute_percentage_error(y_true, y_predict)
    print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))
    
    # 预测结果可视化
    cycol = cycle('bgrcmk')
    plt.figure(dpi=100, figsize=(14, 5))
    plt.plot(y_true, c=next(cycol), markevery=5)
    plt.plot(y_predict, c=next(cycol), markevery=5)
    plt.legend(['y_true', 'y_predict'])
    plt.xlabel('时间')
    plt.ylabel('功率(kW)')
    plt.show()   
    
    return 0
error_and_plot(pre_y, y_predict[:,-1]) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/298130.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Kafka消息阻塞:拯救面试的八大终极解决方案!

大家好&#xff0c;我是小米&#xff0c;一个对技术充满热情的90后程序员。最近在准备社招面试的过程中&#xff0c;遇到了一个超级有挑战性的问题&#xff1a;“Kafka消息阻塞怎么解决&#xff1f;”今天&#xff0c;我就来和大家一起深入剖析这个问题&#xff0c;分享我在解决…

Python从入门到网络爬虫(MySQL链接)

前言 在实际数据分析和建模过程中&#xff0c;我们通常需要从数据库中读取数据&#xff0c;并将其转化为 Pandas dataframe 对象进行进一步处理。而 MySQL 数据库是最常用的关系型数据库之一&#xff0c;因此在 Python 中如何连接 MySQL 数据库并查询数据成为了一个重要的问题…

【MySQL四大引擎,数据库管理,数据表管理,数据库账号管理】

一. MySQL四大引擎 查看存储引擎 SHOW ENGINES support 字段说明 defaulti的为默认的引擎 为YES表示可以使用 为NO表示不能使用 四大引擎 InnoDB InnoDB表类型可以看作是对MyISAM的进一步更新产品&#xff0c;它提供了事务、行级锁机制和外键约束的功能&#xff0c;也是目前…

Python中的cls语法

在Python中&#xff0c;cls 是一个用于指代类本身的约定性名称&#xff0c;通常用作类方法&#xff08;class method&#xff09;中的第一个参数。cls 类似于 self&#xff0c;它是对类的引用&#xff0c;而不是对实例的引用。cls 通常在类方法中用于访问类级别的属性和方法。举…

智能门锁人脸识别好用监控不好用是怎么回事?

智能门锁的人脸识别和监控所用的主要硬件都是摄像头&#xff0c;如果二个功能都共用同一摄像头的话&#xff0c;所拍出来的图像清晰度应该是一样的&#xff0c;但有些智能锁可能并非如此&#xff0c;况且它们是两个不同的功能&#xff0c;所以成像的清晰度可能并不一样&#xf…

栅极驱动芯片三种隔离技术

栅极驱动芯片三种隔离技术 1.栅极驱动器概述2.隔离栅极驱动芯片2.1隔离驱动器重要指标 3.三种常见隔离技术3.1光隔离3.2变压器隔离/磁隔3.3电容隔离 4.三种隔离器性能对比 1.栅极驱动器概述 栅极驱动器&#xff0c;在任何功率水平为任何应用高效可靠地驱动任何功率开关。 比如M…

虾皮长尾词工具:如何使用关键词工具优化Shopee产品的长尾关键词

在Shopee&#xff08;虾皮&#xff09;平台上&#xff0c;卖家们都希望能够吸引更多的潜在买家&#xff0c;提高产品的曝光率和转化率。而要实现这一目标&#xff0c;了解和使用长尾关键词是非常重要的。本文将介绍长尾关键词的定义、重要性以及如何使用关键词工具来优化Shopee…

Spring Data JPA入门到放弃

参考文档&#xff1a;SpringData JPA&#xff1a;一文带你搞懂 - 知乎 (zhihu.com) 一、 前言 1.1 概述 Java持久化技术是Java开发中的重要组成部分&#xff0c;它主要用于将对象数据持久化到数据库中&#xff0c;以及从数据库中查询和恢复对象数据。在Java持久化技术领域&a…

leetcode经典【双指针】例题

删除有序数组中的重复项&#xff1a; https://leetcode.cn/problems/remove-duplicates-from-sorted-array/ 解题思路&#xff1a; 首先注意数组是有序的&#xff0c;那么重复的元素一定会相邻。 注: 要求删除重复元素&#xff0c;实际上就是将不重复的元素移到数组的左侧。 考…

18.标题统计

题目 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);String str sc.nextLine();int res 0;for(int i0;i<str.length();i) {char c str.charAt(i);if(c! && c!\n) {res;}}System.o…

BUUCTF--pwnable_start1

查看保护&#xff1a; 32位程序保护全没开&#xff0c;黑盒测试下效果&#xff1a; 存在栈溢出&#xff0c;那么这题的想法就是直接ret2shellcode了。IDA中看看具体流程&#xff1a; 出奇的少&#xff0c;这题不能看反汇编的代码&#xff0c;直接去看汇编&#xff1a; 主要就2个…

sql——窗口范围之partition by 与 order by

partition by 关键字 partition by 在开窗函数中&#xff0c;常用于表示某个分区&#xff0c;规则了数据的范围 order by 关键字 order by 常用于对分区内的数据进行排序&#xff0c;常见的情况下&#xff0c;order by还能规定sql语句的影响范围。 rows between unbounded …

kannegiesser触摸屏维修CTT-11 4PP420.1043-K37

贝加莱触摸屏维修4PP420.1043-K37 kannegiesser工控机触摸屏维修CTT-11 工控机触摸屏维修常见故障现象 1、工控机开机有显示&#xff0c;但是屏幕很暗&#xff0c;用调亮度功能键调试无任何变化&#xff1b; 2、工控机开机触摸屏白屏或花屏&#xff0c;但是外接显示器正常&a…

机器学习(四) -- 模型评估(3)

系列文章目录 机器学习&#xff08;一&#xff09; -- 概述 机器学习&#xff08;二&#xff09; -- 数据预处理&#xff08;1-3&#xff09; 机器学习&#xff08;三&#xff09; -- 特征工程&#xff08;1-2&#xff09; 机器学习&#xff08;四&#xff09; -- 模型评估…

【JAVA】volatile 关键字的作用

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; JAVA ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 volatile 的作用&#xff1a; 结语 我的其他博客 前言 在多线程编程中&#xff0c;保障数据的一致性和线程之间的可见性是…

优化|PLSA理论与实践

PLSA又称为概率潜在语义分析&#xff0c;是一种利用概率生成模型对文本集合进行话题分析的无监督学习方法。该模型最大的特点是加入了主题这一隐变量&#xff0c;文本生成主题&#xff0c;主题生成单词&#xff0c;从而得到单词-文本共现矩阵。本文将对包含物理学、计算机科学、…

嵌入式(五)通信协议 | 串行异步同步 UART SPI I2C 全解析

文章目录 0 串口通信协议1 通用异步收发传输器 UART1.1 串口配置1.2 串口初始化1.3 串口发送和接收方式1.3.1 轮询方式发送1.3.2 中断方式发送1.3.3 查询方式接收1.3.4 中断方式接收 2 串行外设接口 SPI2.1 标准的四线SPI接口2.2 SPI的四种模式2.3 配置2.4 发送和接收Master向S…

[python]gym安装报错ERROR: Failed building wheel for box2d-py

报错截图&#xff1a; box2d是一个游戏领域的2D图形C引擎&#xff0c;用来模拟2D刚体物体运动和碰撞。 swig是一个将c/c代码封装为Python库的工具&#xff08;是Python调用c/c库的一种常见手段&#xff09;&#xff0c;所以在运行时box2d会依赖到swig。而swig并不是一个python库…

C#,简单选择排序算法(Simple Select Sort)的源代码与数据可视化

排序算法是编程的基础。 常见的四种排序算法是&#xff1a;简单选择排序、冒泡排序、插入排序和快速排序。其中的快速排序的优势明显&#xff0c;一般使用递归方式实现&#xff0c;但遇到数据量大的情况则无法适用。实际工程中一般使用“非递归”方式实现。本文搜集发布四种算法…

港口车路协同系统方案

目前&#xff0c;国内自动驾驶应用的两种主流路线是单车智能、单车智能V2X。国内多数港口仍采用4G通信技术&#xff0c;单车智能在港口应用的稳定性较差&#xff0c;比如可能受到金属集装箱干扰及移动通信速率不稳定的影响。单车智能V2X将降低对通信速率的要求&#xff0c;可以…
最新文章