TensorRT模型优化模型部署(七)--Quantization量化(PTQ and QAT)(二)

系列文章目录

第一章 TensorRT优化部署(一)–TensorRT和ONNX基础
第二章 TensorRT优化部署(二)–剖析ONNX架构
第三章 TensorRT优化部署(三)–ONNX注册算子
第四章 TensorRT模型优化部署(四)–Roofline model
第五章 TensorRT模型优化部署(五)–模型优化部署重点注意
第六章 TensorRT模型优化部署(六)–Quantization量化基础(一)
第七章 TensorRT模型优化模型部署(七)–Quantization量化(PTQ and QAT)(二)


文章目录

  • 系列文章目录
  • 前言
  • 一、(PTQ and quantization-analysis)
    • 1.1 PTQ 优缺点
    • 1.2 量化中的sensitive analysis
    • 1.2 Polygraphy
    • 1.3 FP16/INT8对计算资源的利用
  • 二、Quantization(QAT and kernel-fusion)
    • 1.Q/DQ是什么
    • 2.量化流程
  • 总结


前言

理解PTQ和QAT的区别,以及PTQ的优缺点和layer-wise sensitive analysis


一、(PTQ and quantization-analysis)

根据量化的时机,一般我们会把量化分为
• PTQ(Post-Training Quantization),训练后量化
• QAT(Quantization-Aware Training),训练时量化

在这里插入图片描述

PTQ一般是指对于训练好的模型,通过calibration算法等来获取dynamic range来进行量化。
但量化普遍上会产生精度下降。所以QAT为了弥补精度下降,在学习过程中通过Fine-tuning权
重来适应这种误差,实现精度下降的最小化。所以一般来讲,QAT的精度会高于PTQ。但并不
绝对。

1.1 PTQ 优缺点

PTQ(Post-training quantization)也被称作隐式量化(implicit quantization)。我们并不显式的
对算子添加量化节点(Q/DQ),calibration之后TensorRT根据情况进行量化。

优点
• 方便使用,不需要训练。可以在部署设备上直接跑
缺点

  1. 精度下降
    • 量化过程会导致精度下降。但PTQ没有类似于QAT这种fine-tuning的过程。所以权重不会更
    新来吸收这种误差
  2. 量化不可控
    • TensorRT会权衡量化后所产生的新添的计算或者访存, 是否用INT8还是FP16。
    • TensorRT中的kernel autotuning会选择核函数来做FP16/INT8的计算。来查看是否在CUDA
    core上跑还是在Tensor core上跑
    • 有可能FP16是在Tensor core上,但转为INT8之后就在CUDA core上了
  3. 层融合问题
    • 量化后有可能出现之前可以融合的层,不能融合了
    • 量化会添加reformatter这种更改tensor的格式的算子,如果本来融合的两个算子间添加了这
    个就不能被融合了
    • 比如有些算子支持int8,但某些不支持。之前可以融合的,但因为精度不同不能融合了

如果INT8量化后速度反而会比FP16/FP32要慢,我们可以从以上的2和3去分析并排查原因

1.2 量化中的sensitive analysis

从精度分析的角度去弥补PTQ的精度下降,我们可以进行layer-wise的量化分析。这种方法被称
作layer-wise sensitive analysis。每层对模型的重要度比例是不一样的,普遍来讲,模型框架中会有一些层的量化对精度的影响比较大。我们管它们叫做敏感层(sensitive layer)。对于这些敏感层的量化我们需要非常小心。尽量用FP16。敏感层一般靠近模型的输入输出

在这里插入图片描述

在这里插入图片描述

1.2 Polygraphy

Polygraphy 是英伟达推出的一款工具,用于可视化和分析深度学习模型的性能和效果。可以分析并查找模型精度下降并且影响比较大的地方

• onnxruntime与TensorRT engine的layer-wise的精度分析
• 输出每一层layer的权重histogram
• 截取影响整个网络中对精度影响最大的子网,并使用onnx-surgeon单独拿出来

在这里插入图片描述
跑一下Onnx模型再跑一下trt模型,两个模型对比,看激活值差别大概有多大,如果有一个层某个层精度下降比较大就会报错,然后把它取出来。

具体查看官方文档:https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy#examples

1.3 FP16/INT8对计算资源的利用

在做量化后,我们无法指定将量化后的conv或者gemm放在Tensor core还是在CUDA core上计算。这些是TensorRT在帮我们选择核函数的时候自动完成的。查看是否在用Tensor core可以通过下面三个办法

• 使用dlprof
• 使用nsight system
• 使用trtexec

DLProf
DLProf (Deep learning Profiler)工具可以把模型在GPU上的执行情况以TensorBoard的形式打印出来,分析TensorCore的使用情况。DLProf不支持Jetson系列的Profile。对于Jetson,我们可以使用Nsight system或者trtexec。具体查看官方文档:https://developer.nvidia.com/blog/profiling-and-optimizing-deep-neural-networks-with-dlprof-and-pyprof/

Nsight System/trtexec
如果是利用Nsight system的话,我们可以查看到哪一个kernel的时间占用率最高,之后从kernel的名字取推测这个kernel是否在用Tensor Core。
eg:

• h884 = HMMA = FP16 TensorCore
• i8816 = IMMA = INT8 TensorCore
• hcudnn = FP16 normal CUDA kernel (without TensorCore)
• icudnn = INT8 normal CUDA kernel (without TensorCore)
• scudnn = FP32 normal CUDA kernel (without TensorCore)

HMMA: Half-precision matrix multiply and accumulate
Nsight System/trtexec IMMA: Int-precision matrix multiply and accumulate

二、Quantization(QAT and kernel-fusion)

QAT(Quantization Aware Training)也被称作显式量化。我们明确的在模型中添加Q/DQ节点
(量化/反量化),来控制某一个算子的精度。并且通过fine-tuning来更新模型权重,让权重学习
并适应量化带来的精度误差。QAT的核心就是通过添加fake quantization,也就是Q/DQ节点,来模拟量化过程

1.Q/DQ是什么

Q/DQ node也被称作fake quantization node,是用来模拟fp32->int8的量化的scale和
shift(zero-point),以及int8->fp32的反量化的scale和shift(zero-point)。QAT通过Q和DQ
node里面存储的信息对fp32或者int8进行线性变换。
在这里插入图片描述

TensorRT对包含Q/DQ节点的onnx模型使用很多图优化,从而提高计算效率。主要分为
• Q/DQ fusion
通过层融合,将Q/DQ中的线性计算与conv或者linear这种线性计算融合在一起,实现int8计算
• Q/DQ Propagation
将Q节点尽量往前挪,将DQ节点尽量往后挪,让网络中int8计算的部分变得更长
在这里插入图片描述
在这里插入图片描述
QAT的学习过程
• 主要是训练weight来学习误差
Q/DQ中的scale和zero-point也是可以训练的。通过训练来学习最好的scale来表示dynamic range
• 没有PTQ中那样人为的指定calibration过程
不是因为没有calibration这个过程来做histogram的统计,而是因为QAT会利用fine-tuning的数
据集在训练的过程中同时进行calibration,这个过程是我们看不见的。这就是为什么我们在
pytorch创建QAT模型的时候需要选定calibration algorithm。

pytorch支持对已经训练好的模型自动添加Q/DQ节点。详细可以参考https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization

2.量化流程

  1. 先进行PTQ
    从多种calibration策略中选取最佳的算法,查看是否精度满足,如果不行再下一步。
  2. 进行partial-quantization
    通过layer-wise的sensitve analysis分析每一层的精度损失,尝试fp16 + int8的组合;fp16用在敏感层(网络入口和出口),int8用在计算密集处(网络的中间),查看是否精度满足,如果不行再下一步。(注意,这里同时也需要查看计算效率是否得到满足)
  3. 进行QAT来通过学习权重来适应误差
    选取PTQ实验中得到的最佳的calibration算法,通过fine-tuning来训练权重(大概是原本训练的10%个epoch),查看是否精度满足,如果不行查看模型设计是否有问题。(注意,这里同时也需要查看层融合是否被适用,以及Tensor core是否被用)

总结

下节介绍channel-level pruning的算法,以及如何使用L1-Norm来让权重稀疏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/318080.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java中finally和return的执行顺序

Java中finally和return的执行顺序 try...catch...finally1. finally语句在return语句执行之后return返回之前执行的2. finally块中的return语句会覆盖try块中的return返回3. 如果finally语句中没有return语句覆盖返回值,那么原来的返回值可能因为finally里的修改而改…

进程的状态

进程状态反映进程执行过程的变化。这些状态随着进程的执行和外界条件的变化而转换。在三态模型 中,进程状态分为三个基本状态,即就绪态,运行态,阻塞态。在五态模型中,进程分为新建态、就绪态,运行态&#x…

【书生·浦语】大模型实战营——第四课笔记

教程链接:https://github.com/InternLM/tutorial/blob/main/xtuner/README.md 视频链接:https://www.bilibili.com/video/BV1yK4y1B75J/?vd_source5d94ee72ede352cb2dfc19e4694f7622 本次视频的内容分为以下四部分: 目录 微调简介 微调会使…

【ArcGIS遇上Python】ArcGIS Python批量筛选多个shp中指定字段值的图斑(以土地利用数据为例)

文章目录 一、案例分析二、提取效果二、代码运行效果三、Python代码四、数据及代码下载一、案例分析 以土地利用数据为例,提取多个shp数据中的旱地。 二、提取效果 原始土地利用数据: 属性表: 提取的旱地:(以图层名称+地类名称命名)

数据结构——排序算法之快速排序

个人主页:日刷百题 系列专栏:〖C/C小游戏〗〖Linux〗〖数据结构〗 〖C语言〗 🌎欢迎各位→点赞👍收藏⭐️留言📝 ​ ​ 前言: 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。 基本思想&…

弟12章 1 网络编程

文章目录 网络协议概述 p164TCP协议与UDP协议的区别 p165 网络协议概述 p164 ipv4:十进制点分制 ipv6:十六进制冒号分隔 TCP协议与UDP协议的区别 p165 tcp协议的三次握手:

MySQL单表查询

显示所有职工的基本信息。 mysql8.0 [chap03]>select * from worker; 查询所有职工所属部门的部门号,不显示重复的部门号。 mysql8.0 [chap03]>select distinct(部门号) from worker; 求出所有职工的人数。 mysql8.0 [chap03]>select count(*) from …

山西电力市场日前价格预测【2024-01-14】

日前价格预测 预测说明: 如上图所示,预测明日(2024-01-14)山西电力市场全天平均日前电价为415.13元/MWh。其中,最高日前电价为851.84元/MWh,预计出现在18:15。最低日前电价为198.87元/MWh,预计…

04.neuvector进程策略生成与管控实现

原文链接,欢迎大家关注我的github 一、进程学习管控的实现方式 策略学习实现: 进程的学习与告警主要依据通过netlink socket实时获取进程启动和退出的事件: 1.创建netLink socket; 2.通过创建netlink的fd对进程的事件进行捕获与更新&#x…

“超人练习法”系列08:ZPD 理论

01 先认识一个靓仔 看过 Lev Vygotsky 这个人的书吗?他是一位熟练心理学家,对人们习得技能的方式非常感兴趣,但他 37 岁的时候就因肺炎英年早逝了。 他认为社会环境对学习有关键性的作用,认为社会因素与个人因素的整合促成了学习…

计算机网络 —— 数据链路层

数据链路层 3.1 数据链路层概述 数据链路层把网络层交下来的数据构成帧发送到链路上,以及把收到的帧数据取出并上交给网络层。链路层属于计算机网络的底层。数据链路层使用的信道主要由以下两种类型: 点对点通信。广播通信。 数据链路和帧 链路&…

UniRepLKNet实战:使用 UniRepLKNet实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

LV.13 D10 Linux内核移植 学习笔记

一、Linux内核概述 1.1 内核与操作系统 内核 内核是一个操作系统的核心,提供了操作系统最基本的功能,是操作系统工作的基础,决定着整个系统的性能和稳定性 操作系统 操作系统是在内核的基础上添加了各种工具集、桌面管理器、库、…

基于Java SSM框架实现企业车辆管理系统项目【项目源码】计算机毕业设计

基于java的SSM框架实现企业车辆管理系统演示 JSP技术 JSP技术本身是一种脚本语言,但它的功能是十分强大的,因为它可以使用所有的JAVA类。当它与JavaBeans 类进行结合时,它可以使显示逻辑和内容分开,这就极大的方便了运动员的需求…

关于html导出word总结一

总结 测试结果不理想,html-to-docx 和 html-docx-js 最终导出的结果 都 差强人意,效果可以见末尾的附图 环境 "electron": "24.3.0" 依赖库 html-docx-js html-docx-js - npm html-to-docx html-to-docx - npm file-saver…

如何将重复方法封装为Aop切面并结合注解使用

首先要导入依赖 <dependency><groupId>org.aspectj</groupId><artifactId>aspectjweaver</artifactId> </dependency> 编写注解 package com.yg.domain.note;import java.lang.annotation.ElementType; import java.lang.annotation.Rete…

PyCharm连接服务器 - 2

文章目录 PyCharm连接服务器-21.如何连接服务器&#xff1f;2.如何在终端窗口打开SSH连接&#xff1f;3.Terminal终端出现中文乱码的解决办法&#xff1f;4.如何查看远程服务器的树目录结构&#xff1f;5.如何配置代码同步&#xff1f;6.如何为项目配置远程服务器中的python解释…

前端 TS 语法继承 多态 修饰符 readonly 抽象类 ts 基本写法 可选 剩余参数 函数重载 接口 类(3)

继承 继承之间的叫法 A类继承了B类&#xff0c;那么A类叫做子类&#xff0c;B类叫成基类 子类 ---》派生类 基类 ---》超类&#xff08;父类&#xff09; // 继承之间的叫法 // A类继承了B类&#xff0c;那么A类叫做子类&#xff0c;B类叫成基类 // 子类 ---》派生类 // 基类 …

【C++ 程序设计入门基础】- 第4节-函数

1、函数 函数是对实现某一功能的代码的模块化封装。 函数的定义&#xff1a; 标准函数&#xff1a; 输入 n 对整数的 a、b &#xff0c;输出它们的和。 #include <iostream> #include <windows.h> using namespace std;int add(int a,int b);//函数原型声明int…

ppt怎么录屏录音并且导出?好用录屏软件推荐

ppt已经成为了日常工作与学习中必不可少的工具&#xff0c;而ppt屏幕录制功能&#xff0c;可以方便用户将他人的演讲或视频中的内容记录下来&#xff0c;以便进一步学习与研究。录制ppt演示并将其导出为视频文件&#xff0c;可以帮助我们进行分享&#xff0c;但是很多人不知道p…
最新文章