【操作系统】在阅读论文:OrcFS: Orchestrated file system for flash storage时需要补充的基础知

在阅读论文:OrcFS: Orchestrated file system for flash storage是需要补充的基础知识
这篇论文是为了解决软件层次之间的信息冗余问题

To minimize the disk traffic, the file system buffers the updates and then flushes them to the disk as a single unit, a segment (e.g.,2Mbyte), either when the buffer is full or when fsync() is called.

在这里插入图片描述The metadata area consists of the file system super block (FS-SB), checkpoint, segment information table (SIT), and node address table (NAT). The SIT manages the block
bitmap of each segment in the data area. The NAT manages the block address corresponding to
each node ID.

在这里插入图片描述

fsync

一、缓冲#
传统的UNIX实现的内核中都设置有缓冲区或者页面高速缓存,大多数磁盘IO都是通过缓冲写的。

当你想将数据write进文件时,内核通常会将该数据复制到其中一个缓冲区中,如果该缓冲没被写满的话,内核就不会把它放入到输出队列中。

当这个缓冲区被写满或者内核想重用这个缓冲区时,才会将其排到输出队列中。等它到达等待队列首部时才会进行实际的IO操作。
在这里插入图片描述
这里的输出方式就是大家耳熟能详的: 延迟写

这个缓冲区就是大家耳熟能详的:OS Cache

二、延迟写的优缺点#
很明显、延迟写降低了磁盘读写的次数,但同时也降低了文件的更新速度。

这样当OS Crash时由于这种延迟写的机制可能会造成文件更新内容的丢失。而为了保证磁盘上的实际文件和缓冲区中的内容保持一致,UNIX系统提供了三个系统调用:sync、fsync、fdatasyn

三、sync、fsync、fdatasync

#include<unistd.h>
int fsync(int filedes);
int fdatasync(int filedes);
int sync();

sync系统调用:将所有修改过的缓冲区排入写队列,然后就返回了,它并不等实际的写磁盘的操作结束。所以它的返回并不能保证数据的安全性。通常会有一个update系统守护进程每隔30s调用一次sync。

fsync系统调用:需要你在入参的位置上传递给他一个fd,然后系统调用就会对这个fd指向的文件起作用。fsync会确保一直到写磁盘操作结束才会返回。所以fsync适合数据库这种程序。

fdatasync系统调用:和fsync类似但是它只会影响文件的一部分,因为除了文件中的数据之外,fsync还会同步文件的属性。

缓存的意义:

系统调用是一件成本很高的事情,如果没有缓冲区,写一个数据就要传输一下,时间成本很高。缓冲区可以根据一定的策略进行数据的一次性传输,所以意义就是可以节省调用者的时间。

OrcFS的架构

在这里插入图片描述

基础知识补充

1.磁盘

磁盘是计算机上唯一一个机械设备,磁盘和我们现在电脑上的固态硬盘(SSD)不一样,固态硬盘是电子的,比起磁盘要快的多,但是价格比磁盘贵。磁盘现在只有一些公司存储大量数据的时候会用,因为成本低。

机械磁盘中主要的部件有:马达、磁盘、磁头等,磁盘有一摞,数据就记录在磁盘上面,一个磁盘有两面,就会有两个磁头,一个磁头负责一面的数据读写。磁头负责读写磁盘上的数据,马达负责转动磁盘。磁头和磁盘是不接触的,但是距离非常近,如果磁头接触了磁盘,就有可能把磁盘上的数据抹掉,造成数据丢失。所以磁盘是不能碰撞的,一旦磕碰就有可能会发生数据丢失,这也是被淘汰的原因

计算机是只能识别0和1的,那么在磁盘上怎么区分0和1呢?不同的设备区分0和1的方法不同,在磁盘上就是以南极北极区分0和1,磁盘的盘片上有无数的基本单元,每一个基本单元就是一个磁铁,磁铁就有南极和北极。所以写入数据的过程就是把N编程S,删除数据的本质就是S编程N。所以磁头读取数据就是读取南北极,写入数据就是更改南北极。

在这里插入图片描述

2.具体存储:

数据在盘面上存储的,而盘面是一个同心圆,那么根据什么规则来找到数据所在的区域呢?

把盘面分为多个扇面,每个扇面都有磁道划分扇区,数据就是存储在无数个扇区里面,每个扇区大小不同,但是存储的bit位是相同的,都是512字节,那么怎么找到对应的扇区呢? 一个磁盘有多个盘面,一个盘面对应一个磁头,所以可以给磁头定一个编号,根据磁头能找到盘面,而盘面相对位置都是一样的,所以就会有一个柱面,这个柱面就是磁道,然后根据扇面的编号就可以确定一个扇区。磁头(head)、柱面(cylinder)、扇区(sector)这种就是一种CHS定位法。根据这种方法可以定位任意一个扇区,把文件写入磁盘的本质就是给一个或者多个扇区写入二进制,或者读取多个扇区的二进制。
在这里插入图片描述

对磁盘物理结构的逻辑抽象

​ 一个磁盘通过CHS地址能够访问到任何一个扇区,那么OS内不能是不是通过CHS地址访问磁盘中的数据呢?并不是。一旦磁盘物理结构发生改变,OS就不能访问数据了,这样是为了OS和磁盘之间解耦。

一个扇区也就是512字节,但是OS读取数据的时候基本单位是4kb,哪怕OS只修改一个bit位OS也会把这一个bit位所在4kb全部读取,然后修改完成后再把4kb整体放回到原来的地方。所以操作系统需要有一套新的地址进行IO操作。
那么操作系统想要一次读取4kb(也就是8个扇区),怎么读取的呢?
把一个盘面抽象成一个数组。LBA方式读取数据

​ 磁盘的数据存储再盘面上,而盘面是一个同心圆,从最外圈到最内圈有无数个磁道,一圈磁道有许多扇区,如果把磁道拉伸成一个线性的,就像磁带一样,最开始读取数据是在最外圈,最后读取的数据是在最内圈。一个磁道拉伸出来就像一个长条,然后这个长条内有无数个扇区就像数组的空间,这样一圈磁道就被拉伸成了一个数组,内侧磁道拉伸成数组头部跟在外侧磁道尾部的后面,这样就可以把一个同心圆抽象成一个数组。
​ 计算机要读取一个内置类型或者自定义类型时,通常是起始地址+偏移量(数据类型)。OS读取4kb也就是8个扇区就是读取8个扇区空间的首地址。这4kb大小的类型,被称为块。把这个数据块看做一种数据类型。块的地址就是一个下标。这种读取数据的方式被称为LBA。

LBA转换成CHS方法,简单的转换,实际的转换方法一定要复杂得多。

//假设一个盘面有10圈磁道,一圈有500个扇区,一个盘面有5000个扇区。读取6500号数组下标
C:1500/500 = 3
H:6500/5000 = 1
S: 1500%500 = 0
到现在操作系统对磁盘的管理就变成了对数组的管理。

文件系统

​ OS对磁盘抽象为数组管理,每个数组空间为4kb,但是磁盘有着很大的空间,是以GB甚至是TB为单位的。用一个简单数组直接管理难度太大。所以会对磁盘进行分区,类似分C盘D盘,而每个区还是很大,所以每个区会分组(group)管理。
在这里插入图片描述
每个组内又分了各种区域存储不同的信息,把一个组管理模式可以复刻到每一个分组,这样就能管理好整个分区。

super block

这个分区内存放的是:
1.文件系统的类型
2.整个分组的情况
super block在每个分组里都存在,而且都存了文件系统的类型,是同时更新的同样的数据。主要是为了做多个备份,如果super block这个区域的数据没有备份而且损坏,直接导致整个分区的数据不能被使用。

Group Descriptor Table

简称GDT:组描述符,主要是记录组内详细统计等信息。例如每个区域的大小等等

inode table

linux系统中,内容和属性是分开存储的,一个文件的所有属性集合就是一个inode(128kb)节点,一个分组内也有大量的文件也就有大量的inode节点,这些inode节点都存储在inode
table表中,每一个inode节点都有自己的indoe编号,也属于对应文件的属性id。

Linux中查看inode编号ls -il

Date block

主要存储文件的内容数据,所有的文件的内容都被存储在Date block这个区域内。Linux查找一个文件必须先找到这个文件对应的inode节点的编号,通过indoe节点映射关系找到文件的内容。

inode bitmap

这个区域内的一个bit位表示一个inode的使用情况,0表示空可以使用,1表示被占用。

Linux系统只认识inode编号,并不存在文件名,文件名是给用户看的。

ref: https://blog.csdn.net/weixin_48344647/article/details/129925872

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/319117.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

通达信波动指数指标公式,识别盘整还是趋势

波动指数(Choppiness Index)是由澳大利亚商品交易员E.W. Dreiss开发的技术指标&#xff0c;用来判断市场是盘整还是趋势。该指标属于非方向性指标&#xff0c;不用于判断市场方向&#xff0c;而仅用于识别市场趋势。 指标的取值范围为0到100&#xff0c;数值越高&#xff0c;表…

[足式机器人]Part2 Dr. CAN学习笔记-Advanced控制理论 Ch04-12+13 不变性原理+非线性系统稳定设计

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-Advanced控制理论 Ch04-1213 不变性原理非线性系统稳定设计 1. Invariance Princilpe-LaSalle;s Theorem不变性原理2. Nonlinear Basic Feedback Stabilization 非线性系统稳定设计 1. Invarianc…

Visual Studio Code1.67版本已正式发布,新增Rust指南

Visual Studio Code1.67版本已正式发布&#xff0c;该版本包含大量增强生产力的更新项&#xff1a; 资源管理器文件嵌套 通过这次更新&#xff0c;用于浏览和管理文件和文件夹的Visual Studio Code的资源管理器工具现在支持基于名称嵌套相关文件。 资源管理器现在支持根据文…

python学习笔记10(选择结构2、循环结构1)

&#xff08;一&#xff09;选择结构2 1、if……else……语句 #&#xff08;1&#xff09;基本格式 numbereval(input("请输入您的6位中奖号码&#xff1a;")) if number123456:print("恭喜您&#xff0c;中奖了") else:print("未中奖")#&…

JVM内存结构 vs. Java对象模型 vs. Java内存模型

文章目录 0.三者的区别1.JVM内存结构2.Java对象模型3.Java内存模型&#xff08;JMM&#xff09;3.1 为什么需要JMM3.2 JMM是规范3.3 JMM是工具类和关键字的原理3.4 最重要的三点内容 0.三者的区别 JVM内存结构&#xff1a;和Java虚拟机的运行时区域有关。 Java对象模型&#…

负荷预测 | Python基于CEEMDAN-VMD-BiGRU的短期电力负荷时间序列预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 提出一种分解去噪、重构分解的 CEEMDAN-VMD-BiGRU组合预测方法&#xff1a; 1 采用CEEMDAN将原始电力负荷数据分解成一组比较稳定的子序列&#xff0c;联合 小波阈值法将含有噪声的高频分量去噪&#xff0c;保留含有信…

竞赛练一练 第29期:GESP和电子学会相关题目练习

CIE一级2021.09_无奈的Jaime 小宝在房间吵闹&#xff0c;妈妈让Jaime想办法安抚小宝。Jaime在房间来回走动思考方法。最后也没想出方法只能摊开双手说 “sorry&#xff01;”。 1. 准备工作 &#xff08;1&#xff09;添加背景&#xff1a;Bedroom 3&#xff1b; &#xff0…

[解决方案]运行时错误‘53’,文件未找到:MathPage.WLL

问题描述 mathtype使用报错,运行时错误‘53’,文件未找到:MathPage.WLL 解决方案 一、首先确定自己电脑的位数(这里默认大家的电脑都是64位) 二、右击MathType桌面图标,点击“打开文件所在位置”,然后找到MathPage.WLL文件所在位置 MathPage.WLL位置:D:\mathtype\…

Video接口介绍

屏库 https://m.panelook.cn/index_cn.php Open LDI, open lvds display interface OpenLDI and LVDS是兼容的&#xff0c; 是一种电平 https://www.ti2k.com/178597.html MIPI DSI/Camera crosLink FPD-LINK(Flat panel display link)是National(TI) LVDS技术&#xff0c; …

EI论文复现:考虑多能互补的综合能源系统/虚拟电厂/微电网优化运行程序代码!

本程序参考EI论文《基于多能互补的热电联供型微网优化运行》&#xff0c;文章通过储能设备解耦热电联系&#xff0c;建立基于多能互补的综合能源系统/虚拟电厂/微电网优化运行模型。模型包含系统供给侧的多能互补协调与需求侧的综合能源响应两个方面&#xff0c;使供给侧通过能…

Java内存模型之重排序

文章目录 1.什么是重排序2.重排序的好处3.重排序的三种情况4.用volatile修正重排序问题 1.什么是重排序 首先来看一个代码案例&#xff0c;尝试分析一下 x 和 y 的运行结果。 import java.util.concurrent.CountDownLatch;/*** 演示重排序的现象&#xff0c;直到达到某个条件…

解决MPICH的GPU初始化失败:一次深入探索

今天来分享“MPICH&#xff1a;MPII_Init_thread(222): gpu_init failed”这个问题的解决方式 文章目录 前言问题原因解决方案 前言 如果在安装MPICH的时候没有注意要一些选项&#xff0c;那么当使用mpicxx mpi_send.cpp -o send && mpirun -n 2 ./send进行编译输出的…

Linux之静态库和动态库

目录 一、前言 二、对于库的理解 三、静态库 四、动态库 五、动静态库的加载 一、前言 在之前&#xff0c;我们讲了静态库和动态库&#xff0c;详情请跳转&#xff1a;静态库和动态库 下面我们将从工程师的角度&#xff0c;去了解静态库和动态库的形成过程&#xff0c;以…

Android平台RTMP推送|轻量级RTSP服务|GB28181设备接入模块之实时快照保存JPG还是PNG?

JPG还是PNG&#xff1f; JPG和PNG是两种常见的图片文件格式&#xff0c;在压缩方式、图像质量、透明效果和可编辑性等方面存在显著差异。 压缩方式&#xff1a;JPG是一种有损压缩格式&#xff0c;通过丢弃图像数据来减小文件大小&#xff0c;因此可能会损失一些图像细节和质量…

华为设备登录安全配置案例

知识改变命运&#xff0c;技术就是要分享&#xff0c;有问题随时联系&#xff0c;免费答疑&#xff0c;欢迎联系&#xff01; 厦门微思网络​​​​​​ https://www.xmws.cn 华为认证\华为HCIA-Datacom\华为HCIP-Datacom\华为HCIE-Datacom Linux\RHCE\RHCE 9.0\RHCA\ Oracle O…

【现代密码学】笔记9-10.3-- 公钥(非对称加密)、混合加密理论《introduction to modern cryphtography》

【现代密码学】笔记9-10.3-- 公钥&#xff08;非对称加密&#xff09;、混合加密理论《introduction to modern cryphtography》 写在最前面8.1 公钥加密理论随机预言机模型&#xff08;Random Oracle Model&#xff0c;ROM&#xff09; 写在最前面 主要在 哈工大密码学课程 张…

Java Http各个请求类型详细介绍

1. 前言 在Spring Boot框架中&#xff0c;HTTP请求类型是构建Web应用程序的重要组成部分。常见的请求类型包括GET、POST、PUT和DELETE&#xff0c;每种类型都有其特定的用途和特点。本文将详细比较这四种请求类型&#xff0c;帮助您在开发过程中做出明智的选择。 2. GET请求…

Java SPI在数据库驱动、SpringBoot自动装配中的应用

文章目录 1. 初识SPI1.1 SPI的作用1.2 SPI的工作原理1.3 SPI的三个组件&#xff1a;Service、Service Provider、ServiceLoader1.4 SPI使用场景1.5 具体的SPI 源码分析&#xff08;SPI的核心就是ServiceLoader.load()方法&#xff09;1.6 SPI 的优缺点 2. API、SPI、JNDI释义3.…

《工具录》fierce

工具录 1&#xff1a;fierce2&#xff1a;选项介绍3&#xff1a;示例 本文以 kali-linux-2023.3-vmware-amd64 为例。 1&#xff1a;fierce fierce 是开源的网络安全工具&#xff0c;用于进行域名扫描和子域名枚举。 官方网址&#xff1a;https://github.com/mschwager/fierc…

基于springboot时间管理系统源码和论文

在Internet高速发展的今天&#xff0c;我们生活的各个领域都涉及到计算机的应用&#xff0c;其中包括时间管理系统的网络应用&#xff0c;在外国时间管理系统已经是很普遍的方式&#xff0c;不过国内的管理系统可能还处于起步阶段。时间管理系统具有时间管理功能的选择。时间管…
最新文章