基于InceptionV2/InceptionV3/Xception不同参数量级模型开发构建中草药图像识别分析系统,实验量化对比不同模型性能

最近正好项目中在做一些识别相关的内容,我也陆陆续续写了一些实验性质的博文用于对自己使用过的模型进行真实数据的评测对比分析,感兴趣的话可以自行移步阅读即可:

《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》

《图像识别模型哪家强?19款经典CNN模型实践出真知【以眼疾识别数据为基准,对比MobileNet系列/EfficientNet系列/VGG系列/ResNet系列/i、xception系列】》

《基于轻量级卷积神经网络模型实践Fruits360果蔬识别——自主构建CNN模型、轻量化改造设计lenet、alexnet、vgg16、vgg19和mobilenet共六种CNN模型实验对比分析》

《基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验》

本文紧接前面三篇测评分析博文:

《基于EfficientNet(B0-B7)全系列不同参数量级模型开发构建中草药图像识别分析系统,实验量化对比不同模型性能》

《基于VGG(vgg13/vgg16)/ResNet(resnet34/resnet50)不同参数量级模型开发构建中草药图像识别分析系统,实验量化对比不同模型性能》

前面两篇测评分析的博文主要是使用EfficientNet全系列网络模型和MobileNet全系列模型来开发构建的对比实验,相较之下都偏向于轻量级的网络模型,第三篇博文则选择的是在“重量级”领域里面比较经典的VGG和ResNet模型,本文选择的Inception和Xception系列的模型则是介于轻量级网络模型和重量级网络模型之间的体量,实验同样是以基准数据集【中草药图像数据集】为例,开发构建不同参数量级的模型,之后在同样的测试数据集上进行评测对比分析。

数据集中共包含23种类别数据,清单如下:

aiye
baibiandou
baibu
baidoukou
baihe
cangzhu
cansha
dangshen
ezhu
foshou
gancao
gouqi
honghua
hongteng
huaihua
jiangcan
jingjie
jinyinhua
mudanpi
niubangzi
zhuling
zhuru
zhuye
zicao

简单看下部分数据实例:

Inception模型是一种深度卷积神经网络,其核心思想是通过增加网络深度与宽度并减少参数的方法解决问题,并提高模型精度。以下是Inception模型的构建原理:

Inception v1:Inception v1模型的核心结构是将多个并行卷积层(包括1x1、3x3和5x5)和池化层堆叠在一起。这种设计可以增加网络的宽度和深度,同时减少参数的数量。此外,Inception v1在3x3、5x5的卷积核与最大池化层后分别添加了1x1的卷积核,降低维度,这有助于减少特征图的厚度,并增加非线性变化。
Inception v2:Inception v2模型在保持Inception v1的基本结构的同时,通过使用两个连续的3x3卷积层代替5x5的卷积层,减少了计算量。此外,Inception v2还引入了Batch Normalization层,这有助于提高模型的泛化能力。
Inception v3:Inception v3模型进一步改进了Inception v2的设计。在网络的内部,Inception v3使用了Inception模块,该模块可以在不同尺度上进行卷积操作,从而增强了网络对不同尺度特征的感知能力。此外,Inception v3还将卷积核进行分解,将NxN分解为1xN与Nx1,进一步降低参数数量与计算量。
Inception模型通过引入并行卷积层、使用较小的卷积核、引入Batch Normalization层以及分解卷积核等方法,提高了模型的精度和效率。不同的Inception变体(如Inception v1、Inception v2和Inception v3)具有不同的改进和特点,适用于不同的应用场景。

由于时间原因本文仅选取了Inception v2和Inception v3两款更新的模型进行对比分析实验,感兴趣的话可以自行对Inception v1进行评测分析。

Xception模型是基于Inception模型的改进,通过引入深度分离卷积(depthwise separable convolution)操作来提高计算效率和准确性。以下是Xception模型的构建原理:

输入层:接收输入数据。
初始卷积层:使用标准的卷积操作来提取初始特征。
Xception模块:Xception模型的核心部分,由若干个Xception模块组成。每个Xception模块包含多个深度分离卷积操作。每个深度分离卷积操作由两个部分组成:深度卷积和逐点卷积。深度卷积只关注输入数据的通道维度,而逐点卷积则负责将通道维度的特征映射转换为空间维度的特征映射。这种分解操作能够减少计算量和参数数量,同时提高模型的准确性。
全局平均池化层:对特征图进行平均池化,将其转换为固定大小的特征向量。
全连接层:将特征向量映射到类别概率。
输出层:输出最终的预测结果。
Xception模型通过引入深度分离卷积操作,减少了计算量和参数数量,提高了模型的准确性和效率。这种设计使得Xception模型在许多计算机视觉任务中表现出优异的性能,特别是在大规模数据集上。

训练集占比75%,测试集占比25%,所有模型按照相同的数据集配比进行实验对比分析,计算准确率、精确率、召回率和F1值四种指标。结果详情如下所示:

{
	"InceptionV2": {
		"accuracy": 0.9440745672436751,
		"precision": 0.9435216621921879,
		"recall": 0.9468699233421537,
		"f1": 0.9439142835792981
	},
	"InceptionV3": {
		"accuracy": 0.8841544607190413,
		"precision": 0.8825698119466523,
		"recall": 0.8870460205081474,
		"f1": 0.8823524188634222
	},
	"Xception": {
		"accuracy": 0.9214380825565912,
		"precision": 0.9187727980921828,
		"recall": 0.9226904977653273,
		"f1": 0.919376200605818
	}
}

简单介绍下上述使用的四种指标:

准确率(Accuracy):即分类器正确分类的样本数占总样本数的比例,通常用于评估分类模型的整体预测能力。计算公式为:准确率 = (TP + TN) / (TP + TN + FP + FN),其中 TP 表示真正例(分类器将正例正确分类的样本数)、TN 表示真负例(分类器将负例正确分类的样本数)、FP 表示假正例(分类器将负例错误分类为正例的样本数)、FN 表示假负例(分类器将正例错误分类为负例的样本数)。

精确率(Precision):即分类器预测为正例中实际为正例的样本数占预测为正例的样本数的比例。精确率评估分类器在预测为正例时的准确程度,可以避免过多地预测假正例。计算公式为:精确率 = TP / (TP + FP)。

召回率(Recall):即分类器正确预测为正例的样本数占实际为正例的样本数的比例。召回率评估分类器在实际为正例时的识别能力,可以避免漏掉过多的真正例。计算公式为:召回率 = TP / (TP + FN)。

F1 值(F1-score):综合考虑精确率和召回率,是精确率和召回率的调和平均数。F1 值在评估分类器综合表现时很有用,因为它同时关注了分类器的预测准确性和识别能力。计算公式为:F1 值 = 2 * (精确率 * 召回率) / (精确率 + 召回率)。 F1 值的取值范围在 0 到 1 之间,值越大表示分类器的综合表现越好。

为了能够直观清晰地对比不同模型的评测结果,这里对其进行可视化分析,如下所示:

从实验对比分析结果来看:Inceptionv2取得了最优的效果,Xception模型的效果次之,而Inceptionv3的效果最差,不过相较于前面其他系列的模型,这三款模型的效果都是表现很不错的了。

这个分析评测结果仅供参考,大家在实际项目开发中可以参考这组实验,不过也可以基于自己的数据集开发全系列的模型来综合对比选取最优的模型作为生产环境的模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/353138.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

简洁思路推理 KMP 算法——子字符串匹配

例题 28. 找出字符串中第一个匹配项的下标 暴力遍历解法 枚举原串 ss 中的每个字符作为「发起点」,每次从原串的「发起点」和匹配串的「首位」开始尝试匹配: 匹配成功:返回本次匹配的原串「发起点」。 匹配失败:枚举原串的下一个…

PC机组成之主板、芯片组与BIOS

PC机组成 台式PC由主机和外部设备组成,主机由主板、CPU、内存条、显卡、网卡、声卡、插卡和插座、机箱和电源等组成。 主板、芯片组和BIOS 主板 主板也称母版,是微型计算机中最大的一块集成电路板,也是其他部件和设备的连接载体。 CPU、内…

EndNote20 添加GBT7714文献格式

GBT 7714格式是中国国家标准《文后参考文献著录规则》的规定,用于指导学术论文、期刊文章等文献的参考文献著录。GBT 7714标准规定了参考文献的格式、内容和著录要求,以确保文献的一致性和标准化。 在EndNote 20中,若需要按照GBT 7714格式在W…

04.领域驱动设计:了解聚合和聚合根,怎样设计聚合-学习总结

目录 1、概述 2、聚合 3、聚合根 4、怎么设计聚合 4.1 聚合的构建过程主要步骤 第 1 步:采用事件风暴。 第 2 步:选出聚合根。 第 3 步:找出与聚合根关联的所有紧密依赖的实体和值对象。 第 4 步:画出对象的引用和依赖模型…

支持下一代网络IpV6的串口服务器,IpV6串口485接口转网口

和IPv4比较,IPv6有两个极具吸引力的特点:一个是IPv6采用的128位地址格式,而IPv4采用32位的地址格式,因此IPv6使地址空间增大了296;另一个是IPv6物联网数据业务具有更强的支持能力,成为未来物联网的重要协议…

体验 AutoGen Studio - 微软推出的友好多智能体协作框架

体验 AutoGen Studio - 微软推出的友好多智能体协作框架 - 知乎 最近分别体验了CrewAI、MetaGPT v0.6、Autogen Studio,了解了AI Agent 相关的知识。 它们的区别 可能有人要问:AutoGen我知道,那Autogen Studio是什么? https://g…

82 C++对象模型探索。数据语义学 - 单一继承下的数据成员布局

在使用继承后,由于内存对齐的影响,会带来内存空间的额外增加。 windows 和 linux 的图示: 对于windows,在继承时,子类中应该包含父类的全部,包括了父类内存对齐时空的内存部分。 对于linux,编…

pytorch-metric-learning度量学习工具官方文档翻译

基于Pytorch实现的度量学习方法 开源代码:pytorch-metric-learning官网文档:PyTorch Metric Learning官方文档 度量学习相关的损失函数介绍: 度量学习DML之Contrastive Loss及其变种度量学习DML之Triplet Loss度量学习DML之Lifted Structu…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-菜单管理实现

锋哥原创的SpringbootLayui python222网站实战: python222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火…

【大数据】详解 Flink 中的 WaterMark

详解 Flink 中的 WaterMark 1.基础概念1.1 流处理1.2 乱序1.3 窗口及其生命周期1.4 Keyed vs Non-Keyed1.5 Flink 中的时间 2.Watermark2.1 案例一2.2 案例二2.3 如何设置最大乱序时间2.4 延迟数据重定向 3.在 DDL 中的定义3.1 事件时间3.2 处理时间 1.基础概念 1.1 流处理 流…

ubuntu20.04 安装ROS2 记录

主要参考B站古月居的ROS2入门21讲 和 以下链接(基本和视频上一致) ubuntu20.04安装ROS2 详细教程_ubuntu20.04 ros2-CSDN博客 但是中间有些需要注意的地方, 1,添加源 步骤中提到 sudo curl -sSL https://raw.githubuserconten…

基于QC-LDPC编码的循环移位网络的FPGA实现

一、桶式移位寄存器(barrel shifter) 八位桶式移位寄存器的VHDL实现如下,由于每一层结构相似,于是采用生成语句for_generate实现,使用该代码实现的RTL级分析和理论的结构一致,仿真结果也符合预期。 entity barrel_shift isGENE…

【RT-DETR有效改进】反向残差块网络EMO | 一种轻量级的CNN架构(轻量化网络,参数量下降约700W)

前言 大家好,这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PP…

文件上传之大文件分块上传进度控制处理

在分块上传内容结束以后的事件监听,我们会实现 unlinkSync 删除临时文件操作,那么试想一下,在这个事件监听中,我们是否可以通过totalChunks以及currentChunk获取当前上传的进度情况呢? 后端 upload上传接口&#xff…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-友情链接管理实现

锋哥原创的SpringbootLayui python222网站实战: python222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火…

在 React 组件中使用 JSON 数据文件,怎么去读取请求数据呢?

要在 React 组件中使用 JSON 数据&#xff0c;有多种方法。 常用的有以下几种方法&#xff1a; 1、直接将 JSON 数据作为一个变量或常量引入组件中。 import jsonData from ./data.json;function MyComponent() {return (<div><h1>{jsonData.title}</h1>&…

openssl3.2 - 测试程序的学习 - 准备openssl测试专用工程的模板

文章目录 openssl3.2 - 测试程序的学习 - 准备openssl测试专用工程的模板概述笔记工程中需要的openssl的库实现END openssl3.2 - 测试程序的学习 - 准备openssl测试专用工程的模板 概述 openssl3.2 - 测试程序的学习 整了几个test.c, 每开一个新的测试工程, 总要改这改那的. …

Maven入门及其使用

目录 一、Maven入门 1.1 初识Maven 1.2 Maven的作用 1.2.1 依赖管理 1.2.2 统一项目结构 1.2.3 项目构建 1.3 Maven坐标 1.4 Maven仓库 1.4.1 Maven仓库概述 二、Maven的下载与安装 2.1 安装步骤 2.1.1 解压安装&#xff08;建议解压到没有中文、特殊字符的路径下。&#xff09…

【JavaScript】ECMA6Script es6

文章目录 一、 es6的介绍二、 es6的变量和模板字符串2.1 let 与 var2.2 const 与 var2.3 模板字符串 三、 es6的解构表达式四、 es6的箭头函数4.1 声明和特点4.2 实践和应用场景4.3 rest和spread 五、es6的对象创建和拷贝5.1 对象创建的语法糖5.2 对象的深拷贝和浅拷贝 六、es6…

STM32 PWM驱动设计

单片机学习&#xff01; 目录 文章目录 前言 一、PWM驱动配置步骤 二、代码示例及注意事项 2.1 RCC开启时钟 2.2 配置时基单元 2.3 配置输出比较单元 2.4 配置GPIO 2.5 运行控制 三、PWM周期和占空比计算 总结 前言 PWM本质是利用面积等效原理来改变波形的有效值。 一、PWM驱动…
最新文章