【数据结构与算法】(20)高级数据结构与算法设计之 Greedy Algorithm 贪心算法 代码示例与详细讲解

目录

    • 4.2 Greedy Algorithm
      • 1) 贪心例子
        • Dijkstra
        • Prim
        • Kruskal
      • 2) 零钱兑换问题
        • 有几个解(零钱兑换 II)Leetcode 518
        • 最优解(零钱兑换)- 穷举法 Leetcode 322
        • 最优解(零钱兑换)- 贪心法 Leetcode 322
      • 3) Huffman 编码问题
        • 问题引入
        • Huffman 树
        • Huffman 编解码
        • 相关题目
      • 4) 活动选择问题
        • 无重叠区间-Leetcode 435
      • 5) 分数背包问题
        • 贪心法
      • 6) 0-1 背包问题
        • 贪心法
      • 贪心算法的局限
      • 7) Set cover problem

在这里插入图片描述

4.2 Greedy Algorithm

1) 贪心例子

称之为贪心算法或贪婪算法,核心思想是

  1. 将寻找最优解的问题分为若干个步骤
  2. 每一步骤都采用贪心原则,选取当前最优解
  3. 因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。

贪心算法的应用:

  1. 背包问题:给定一组物品和一个背包,每个物品有一定的重量和价值,要求在不超过背包容量的情况下,尽可能多地装入物品。
  2. 活动选择问题:在一个活动集合中,每次只能参加一个活动,问如何安排时间以最大化所有活动的收益。
  3. 编辑距离问题:给定两个字符串,求它们之间的最小编辑距离(即将一个字符串转换为另一个字符串所需的最少操作次数)。
  4. 网络流问题:给定一张有向图和一些起点和终点,求最大流量。
  5. 找零问题:给定一定数量的硬币和需要找零的金额,求使用最少的硬币数。

常见问题及解答:

  1. 贪心算法一定会找到最优解吗?
    答:不一定。贪心算法只保证在每一步选择中都是最优的,但并不能保证整个问题的最优解。例如,背包问题中的贪心算法可能会导致最后一个物品没有被装入背包。
  2. 如何判断一个问题是否适合用贪心算法解决?
    答:一个问题如果可以用递归的方式分解成若干个子问题,且每个子问题都有明确的最优解(即局部最优),那么这个问题就可以用贪心算法解决。
  3. 贪心算法的时间复杂度是多少?
    答:贪心算法的时间复杂度取决于问题的规模和具体实现。一般来说,对于规模较小的问题,贪心算法的时间复杂度可以达到O(nlogn)或O(n2);对于规模较大的问题,可能需要O(n3)或更高。

几个贪心的例子

Dijkstra
// ...
while (!list.isEmpty()) {
    // 选取当前【距离最小】的顶点
    Vertex curr = chooseMinDistVertex(list);
    // 更新当前顶点邻居距离
    updateNeighboursDist(curr);
    // 移除当前顶点
    list.remove(curr);
    // 标记当前顶点已经处理过
    curr.visited = true;
}
  • 没找到最短路径的例子:负边存在时,可能得不到正确解
  • 问题出在贪心的原则会认为本次已经找到了该顶点的最短路径,下次不会再处理它(curr.visited = true)
  • 与之对比,Bellman-Ford 并没有考虑局部距离最小的顶点,而是每次都处理所有边,所以不会出错,当然效率不如 Dijkstra
Prim
// ...
while (!list.isEmpty()) {
    // 选取当前【距离最小】的顶点
    Vertex curr = chooseMinDistVertex(list);
    // 更新当前顶点邻居距离
    updateNeighboursDist(curr);
    // 移除当前顶点
    list.remove(curr);
    // 标记当前顶点已经处理过
    curr.visited = true;
}
Kruskal
// ...
while (list.size() < size - 1) {
    // 选取当前【距离最短】的边
    Edge poll = queue.poll();
    // 判断两个集合是否相交
    int i = set.find(poll.start);
    int j = set.find(poll.end);
    if (i != j) { // 未相交
        list.add(poll);
        set.union(i, j); // 相交
    }
}

其它贪心的例子

  • 选择排序、堆排序

  • 拓扑排序

  • 并查集合中的 union by size 和 union by height

  • 哈夫曼编码

  • 钱币找零,英文搜索关键字

    • change-making problem
    • find Minimum number of Coins
  • 任务编排

  • 求复杂问题的近似解

2) 零钱兑换问题

有几个解(零钱兑换 II)Leetcode 518
public class Leetcode518 {
    public int change(int[] coins, int amount) {
        return rec(0, coins, amount, new LinkedList<>(), true);
    }

    /**
     * 求凑成剩余金额的解的个数
     *
     * @param index     当前硬币索引
     * @param coins     硬币面值数组
     * @param remainder 剩余金额
     * @param stack     -
     * @param first     -
     * @return 解的个数
     */
    public int rec(int index, int[] coins, int remainder, LinkedList<Integer> stack, boolean first) {
        if(!first) {
            stack.push(coins[index]);
        }
        // 情况1:剩余金额 < 0 - 无解
        int count = 0;
        if (remainder < 0) {
            print("无解:", stack);
        }
        // 情况2:剩余金额 == 0 - 有解
        else if (remainder == 0) {
            print("有解:", stack);
            count = 1;
        }
        // 情况3:剩余金额 > 0 - 继续递归
        else {
            for (int i = index; i < coins.length; i++) {
                count += rec(i, coins, remainder - coins[i], stack, false);
            }
        }
        if (!stack.isEmpty()) {
            stack.pop();
        }
        return count;
    }

    private static void print(String prompt, LinkedList<Integer> stack) {
        ArrayList<Integer> print = new ArrayList<>();
        ListIterator<Integer> iterator = stack.listIterator(stack.size());
        while (iterator.hasPrevious()) {
            print.add(iterator.previous());
        }
        System.out.println(prompt + print);
    }

    public static void main(String[] args) {
        Leetcode518 leetcode = new Leetcode518();
//        int count = leetcode.coinChange(new int[]{1, 5, 10, 25}, 41);
//        int count = leetcode.coinChange(new int[]{25, 10, 5, 1}, 41);
//        int count = leetcode.coinChange(new int[]{5, 2, 1}, 5);
//        int count = leetcode.coinChange(new int[]{1, 2, 5}, 5);
        int count = leetcode.change(new int[]{15, 10, 1}, 21);
        System.out.println(count);
    }

}
最优解(零钱兑换)- 穷举法 Leetcode 322
public class Leetcode322 {
    static int min = -1; // 需要的最少硬币数  2 3

    public int coinChange(int[] coins, int amount) {
        rec(0, coins, amount, new AtomicInteger(-1), new LinkedList<>(), true);
        return min;
    }

    // count 代表某一组合 钱币的总数
    public void rec(int index, int[] coins, int remainder, AtomicInteger count, LinkedList<Integer> stack, boolean first) {
        if (!first) {
            stack.push(coins[index]);
        }
        count.incrementAndGet(); // count++
        if (remainder == 0) {
            System.out.println(stack);
            if (min == -1) {
                min = count.get();
            } else {
                min = Integer.min(min, count.get());
            }
        } else if (remainder > 0) {
            for (int i = index; i < coins.length; i++) {
                rec(i, coins, remainder - coins[i], count, stack, false);
            }
        }
        count.decrementAndGet(); // count--
        if (!stack.isEmpty()) {
            stack.pop();
        }
    }

    public static void main(String[] args) {
        Leetcode322 leetcode = new Leetcode322();
//        int count = leetcode.coinChange(new int[]{5, 2, 1}, 5);
        int count = leetcode.coinChange(new int[]{25, 10, 5, 1}, 41);
//        int count = leetcode.coinChange(new int[]{2}, 3);
//        int count = leetcode.coinChange(new int[]{15, 10, 1}, 21);
        System.out.println(count);
    }
}
最优解(零钱兑换)- 贪心法 Leetcode 322
public class Leetcode322 {
    public int coinChange(int[] coins, int amount) {
        int remainder = amount;
        int count = 0;
        for (int coin : coins) {
            while (remainder - coin > 0) {
                remainder -= coin;
                count++;
            }
            if (remainder - coin == 0) {
                remainder = 0;
                count++;
                break;
            }
        }
        if (remainder > 0) {
            return -1;
        } else {
            return count;
        }
    }

    public static void main(String[] args) {
        Leetcode322 leetcode = new Leetcode322();
        int count = leetcode.coinChange(new int[]{5, 2, 1}, 5);
//        int count = leetcode.coinChange(new int[]{25, 10, 5, 1}, 41);
//        int count = leetcode.coinChange(new int[]{2}, 3);
        
        // 问题1 没有回头,导致找到更差的解
//        int count = leetcode.coinChange(new int[]{15, 10, 1}, 21);  
        // 问题2 没有回头,导致无解
//        int count = leetcode.coinChange(new int[]{15, 10}, 20);  
        System.out.println(count);
    }
}

3) Huffman 编码问题

问题引入

什么是编码?

简单说就是建立【字符】到【数字】的对应关系,如下面大家熟知的 ASC II 编码表,例如,可以查表得知字符【a】对应的数字是十六进制数【0x61】

\000102030405060708090a0b0c0d0e0f
0000000102030405060708090a0b0c0d0e0f
0010101112131415161718191a1b1c1d1e1f
002020!"#$%&()*+,-./
00300123456789:;<=>?
0040@ABCDEFGHIJKLMNO
0050PQRSTUVWXYZ[\]^_
0060`abcdefghijklmno
0070pqrstuvwxyz{|}~7f

注:一些直接以十六进制数字标识的是那些不可打印字符

传输时的编码

  • java 中每个 char 对应的数字会占用固定长度 2 个字节
  • 如果在传输中仍采用上述规则,传递 abbccccccc 这 10 个字符
    • 实际的字节为 0061006200620063006300630063006300630063(16进制表示)
    • 总共 20 个字节,不经济

现在希望找到一种最节省字节的传输方式,怎么办?

假设传输的字符中只包含 a,b,c 这 3 个字符,有同学重新设计一张二进制编码表,见下图

  • 0 表示 a
  • 1 表示 b
  • 10 表示 c

现在还是传递 abbccccccc 这 10 个字符

  • 实际的字节为 01110101010101010 (二进制表示)
  • 总共需要 17 bits,也就是 2 个字节多一点,行不行?

不行,因为解码会出现问题,因为 10 会被错误的解码成 ba,而不是 c

  • 解码后结果为 abbbababababababa,是错误的

怎么解决?必须保证编码后的二进制数字,要能区分它们的前缀(prefix-free)

用满二叉树结构编码,可以确保前缀不重复

在这里插入图片描述

  • 向左走 0,向右走 1
  • 走到叶子字符,累计起来的 0 和 1 就是该字符的二进制编码

再来试一遍

  • a 的编码 0
  • b 的编码 10
  • c 的编码 11

现在还是传递 abbccccccc 这 10 个字符

  • 实际的字节为 0101011111111111111(二进制表示)
  • 总共需要 19 bits,也是 2 个字节多一点,并且解码没有问题了,行不行?

这回解码没问题了,但并非最少字节,因为 c 的出现频率高(7 次)a 的出现频率低(1 次),因此出现频率高的字符编码成短数字更经济

考察下面的树

在这里插入图片描述

  • 00 表示 a
  • 01 表示 b
  • 1 表示 c

现在还是传递 abbccccccc 这 10 个字符

  • 实际的字节为 000101 1111111 (二进制表示)
  • 总共需要 13 bits,这棵树就称之为 Huffman 树
  • 根据 Huffman 树对字符和数字进行编解码,就是 Huffman 编解码
Huffman 树
public class HuffmanTree {

    /*
        Huffman 树的构建过程

        1. 将统计了出现频率的字符,放入优先级队列

        2. 每次出队两个频次最低的元素,给它俩找个爹
        3. 把爹重新放入队列,重复 2~3
        4. 当队列只剩一个元素时,Huffman 树构建完成
     */

    static class Node {
        Character ch; // 字符
        int freq;     // 频次
        Node left;
        Node right;
        String code;  // 编码

        public Node(Character ch) {
            this.ch = ch;
        }

        public Node(int freq, Node left, Node right) {
            this.freq = freq;
            this.left = left;
            this.right = right;
        }

        int freq() {
            return freq;
        }

        boolean isLeaf() {
            return left == null;
        }

        @Override
        public String toString() {
            return "Node{" +
                    "ch=" + ch +
                    ", freq=" + freq +
                    '}';
        }
    }

    String str;
    Map<Character, Node> map = new HashMap<>();

    public HuffmanTree(String str) {
        this.str = str;
        // 功能1:统计频率
        char[] chars = str.toCharArray();
        for (char c : chars) {
            /*if (!map.containsKey(c)) {
                map.put(c, new Node(c));
            }
            Node node = map.get(c);
            node.freq++;*/
            Node node = map.computeIfAbsent(c, Node::new);
            node.freq++;
        }
        // 功能2: 构造树
        PriorityQueue<Node> queue = new PriorityQueue<>(Comparator.comparingInt(Node::freq));
        queue.addAll(map.values());
        while (queue.size() >= 2) {
            Node x = queue.poll();
            Node y = queue.poll();
            int freq = x.freq + y.freq;
            queue.offer(new Node(freq, x, y));
        }
        Node root = queue.poll();
        // 功能3:计算每个字符的编码, 功能4:字符串编码后占用 bits
        int sum = dfs(root, new StringBuilder());
        for (Node node : map.values()) {
            System.out.println(node + " " + node.code);
        }
        System.out.println("总共会占用 bits:" + sum);
    }

    private int dfs(Node node, StringBuilder code) {
        int sum = 0;
        if (node.isLeaf()) {
            node.code = code.toString();
            sum = node.freq * code.length();
        } else {
            sum += dfs(node.left, code.append("0"));
            sum += dfs(node.right, code.append("1"));
        }
        if (code.length() > 0) {
            code.deleteCharAt(code.length() - 1);
        }
        return sum;
    }

    public static void main(String[] args) {
        new HuffmanTree("abbccccccc");
    }
}

注意

  • Node::new 是一个 Function,根据 key(即字符)生成 Node 对象
  • 对应的是 public Node(Character ch) 有参构造
Huffman 编解码

补充两个方法,注意为了简单期间用了编解码都用字符串演示,实际应该按 bits 编解码

public class HuffmanTree {
    // ...
    
    // 编码
    public String encode() {
        char[] chars = str.toCharArray();
        StringBuilder sb = new StringBuilder();
        for (char c : chars) {
            sb.append(map.get(c).code);
        }
        return sb.toString();
    }

    // 解码
    public String decode(String str) {
        /*
            从根节点,寻找数字对应的字符
                数字是 0 向左走
                数字是 1 向右走
                如果没走到头,每走一步数字的索引 i++
            走到头就可以找到解码字符,再将 node 重置为根节点
         */
        char[] chars = str.toCharArray();
        int i = 0;
        StringBuilder sb = new StringBuilder();
        Node node = root;
        while (i < chars.length) {
            if (!node.isLeaf()) { // 非叶子
                if(chars[i] == '0') { // 向左走
                    node = node.left;
                } else if(chars[i] == '1') { // 向右走
                    node = node.right;
                }
                i++;
            }
            if (node.isLeaf()) {
                sb.append(node.ch);
                node = root;
            }
        }
        return sb.toString();
    }
    
    @SuppressWarnings("all")
    public static void main(String[] args) {
        HuffmanTree tree = new HuffmanTree("abbccccccc");
        String encoded = tree.encode();
        System.out.println(encoded);
        System.out.println(tree.decode(encoded));
    }
}

注意

  • 循环中非叶子节点 i 要自增,但叶子节点 i 暂不自增
  • 第一个非叶子的 if 判断结束后,仍需要第二个叶子的 if 判断,因为在第一个 if 内 node 发生了变化
相关题目
题目编号题目标题算法思路
1167(Plus 题目)连接棒材的最低费用Huffman 树、贪心

参考解答

/**
 * <h3>连接棒材的最低费用</h3>
 * <p>为了装修新房,你需要加工一些长度为正整数的棒材。如果要将长度分别为 X 和 Y 的两根棒材连接在一起,你需要支付 X + Y 的费用。 返回讲所有棒材连成一根所需要的最低费用。</p>
 */
public class Leetcode1167 {
    /*
        举例 棒材为 [1,8,3,5]

        如果以如下顺序连接(非最优)
        - 1+8=9
        - 9+3=12
        - 12+5=17
        总费用为 9+12+17=38

        如果以如下顺序连接(最优)
        - 1+3=4
        - 4+5=9
        - 8+9=17
        总费用为 4+9+17=30
     */
    int connectSticks(int[] sticks) {
        PriorityQueue<Integer> queue = new PriorityQueue<>();
        for (int stick : sticks) {
            queue.offer(stick);
        }

        int sum = 0;
        while (queue.size() >= 2) {
            Integer x = queue.poll();
            Integer y = queue.poll();
            int c = x + y;
            sum += c;
            queue.offer(c);
        }
        return sum;
    }

    public static void main(String[] args) {
        Leetcode1167 leetcode = new Leetcode1167();
        System.out.println(leetcode.connectSticks(new int[]{1, 8, 3, 5})); // 30
        System.out.println(leetcode.connectSticks(new int[]{2, 4, 3})); // 14
    }
}

4) 活动选择问题

public class ActivitySelectionProblem {

    /*
        要在一个会议室举办 n 个活动
        - 每个活动有它们各自的起始和结束时间
        - 找出在时间上互不冲突的活动组合,能够最充分利用会议室(举办的活动次数最多)

        例1
            0   1   2   3   4   5   6   7   8   9
                |-------)
                    |-------)
                        |-------)
        例2
            0   1   2   3   4   5   6   7   8   9
                |---)
                        |---)
            |-----------------------)
                                |-------)
                                            |---)
                                |---------------)





        几种贪心策略
        1. 优先选择持续时间最短的活动
            0   1   2   3   4   5   6   7   8   9
                |---------------)
                            |-------)
                                |---------------)

        2. 优先选择冲突最少的活动
            0   1   2   3   4   5   6   7   8   9
            |-------)                                       3
                |-------)                                   4
                |-------)                                   4
                |-------)                                   4
                    |-------)                               4
                        |-------)                           2
                            |-----------)                   4
                                    |-------)               4
                                    |-------)               4
                                    |-------)               4
                                        |-------)           3

        3. 优先选择最先开始的活动
            0   1   2   3   4   5   6   7   8   9
            |-----------------------------------)
                |---)
                    |---)
                        |---)

        4. 优先选择最后结束的活动
     */

    static class Activity {
        int index;
        int start;
        int finish;

        public Activity(int index, int start, int finish) {
            this.index = index;
            this.start = start;
            this.finish = finish;
        }

        @Override
        public String toString() {
            return "Activity(" + index + ")";
        }
    }

    public static void main(String[] args) {
        Activity[] activities = new Activity[]{
                new Activity(0, 1, 3),
                new Activity(1, 2, 4),
                new Activity(2, 3, 5)
        };
//        Activity[] activities = new Activity[]{
//                new Activity(0, 1, 2),
//                new Activity(1, 3, 4),
//                new Activity(2, 0, 6),
//                new Activity(3, 5, 7),
//                new Activity(4, 8, 9),
//                new Activity(5, 5, 9)
//        };
        select(activities, activities.length);
    }

    public static void select(Activity[] activities, int n) {
        List<Activity> result = new ArrayList<>();
        int i, j;
        i = 0;
        result.add(activities[i]);
        for (j = 1; j < n; j++) {
            if (activities[j].start >= activities[i].finish) {
                result.add(activities[j]);
                i = j;
            }
        }
        System.out.println(result);
    }
}
无重叠区间-Leetcode 435
题目编号题目标题算法思路
435无重叠区间贪心

参考解答

// 下面代码为 Leetcode 435 题解
public int eraseOverlapIntervals(int[][] intervals) {
    Arrays.sort(intervals, Comparator.comparingInt(a -> a[1]));
    int i, j;
    i = 0;
    int count = 1;
    for (j = 1; j < intervals.length; j++) {
        if (intervals[j][0] >= intervals[i][1]) {
            i = j;
            count++;
        }
    }
    return intervals.length - count;
}
  • 找到不重叠的最多的活动数(count),即活动选择问题原始需求
  • 在此基础上,活动总数 - count,就是题目要的排除数量

5) 分数背包问题

贪心法
public class FractionalKnapsackProblem {

    /*
    1. n个物品都是液体,有重量和价值
    2. 现在你要取走 10升 的液体
    3. 每次可以不拿,全拿,或拿一部分,问最高价值是多少

        编号 重量(升) 价值
        0   4       24      水
        1   8       160     牛奶       选中 7/8
        2   2       4000    五粮液     选中
        3   6       108     可乐
        4   1       4000    茅台       选中

        8140

        简化起见,给出的数据都是【价值/重量】能够整除,避免计算结果中出现小数,增加心算难度
     */

    static class Item {
        int index;
        int weight;
        int value;

        public Item(int index, int weight, int value) {
            this.index = index;
            this.weight = weight;
            this.value = value;
        }

        int unitPrice() {
            return value / weight;
        }

        @Override
        public String toString() {
            return "Item(" + index + ")";
        }
    }

    public static void main(String[] args) {
        Item[] items = new Item[]{
                new Item(0, 4, 24),
                new Item(1, 8, 160),
                new Item(2, 2, 4000),
                new Item(3, 6, 108),
                new Item(4, 1, 4000),
        };
        select(items, 10);
    }

    static void select(Item[] items, int total) {
        Arrays.sort(items, Comparator.comparingInt(Item::unitPrice).reversed());
        int remainder = total;
        int max = 0;
        for (Item item : items) {
            if (remainder - item.weight > 0) {
                max += item.value;
                remainder -= item.weight;
            } else {
                max += remainder * item.unitPrice();
                break;
            }
        }
        System.out.println("最高价值为:" + max);
    }


}

6) 0-1 背包问题

贪心法

可能得不到最优解

public class KnapsackProblem {
    /*
    1. n个物品都是固体,有重量和价值
    2. 现在你要取走不超过 10克 的物品
    3. 每次可以不拿或全拿,问最高价值是多少

        编号 重量(g)  价值(元)
        0   1       1_000_000      钻戒一枚
        1   4       1600           黄金一块
        2   8       2400           红宝石戒指一枚
        3   5       30             白银一块

     */

    static class Item {
        int index;
        int weight;
        int value;

        public Item(int index, int weight, int value) {
            this.index = index;
            this.weight = weight;
            this.value = value;
        }

        public int unitValue() {
            return value / weight;
        }

        @Override
        public String toString() {
            return "Item(" + index + ")";
        }
    }

    public static void main(String[] args) {
        Item[] items = new Item[]{
                new Item(0, 1, 1_000_000),
                new Item(1, 4, 1600),
                new Item(2, 8, 2400),
                new Item(3, 5, 30)
        };
        select(items, 10);
    }

    static void select(Item[] items, int total) {
        Arrays.sort(items, Comparator.comparingInt(Item::unitValue).reversed());
        int max = 0; // 最大价值
        for (Item item : items) {
            System.out.println(item);
            if (total >= item.weight) { // 可以拿完
                total -= item.weight;
                max += item.value;
            } else { // 拿不完
//                max += total * item.unitValue();
//                break;
            }
        }
        System.out.println("最大价值是:" + max);
    }
}

贪心算法的局限

问题名称是否能用贪心得到最优解替换解法
Dijkstra(不存在负边)✔️
Dijkstra(存在负边)Bellman-Ford
Prim✔️
Kruskal✔️
零钱兑换动态规划
Huffman 树✔️
活动选择问题✔️
分数背包问题✔️
0-1 背包问题动态规划

7) Set cover problem

集合覆盖问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/409503.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

9.5K Star,又一款超棒开源轻量自动化运维平台

Hi&#xff0c;骚年&#xff0c;我是大 G&#xff0c;公众号「GitHub指北」会推荐 GitHub 上有趣有用的项目&#xff0c;一分钟 get 一个优秀的开源项目&#xff0c;挖掘开源的价值&#xff0c;欢迎关注。 一个好的运维平台就变得非常重要了&#xff0c;可以节省大量的人力和物…

【HarmonyOS】低代码开发—使用低代码开发服务卡片

DevEco Studio还支持使用低代码开发功能开发服务卡片&#xff0c;目前只支持JS语言&#xff0c;且compileSdkVersion必须为7或以上。 下面以创建一个新的服务卡片为例进行说明。 1.打开一个工程&#xff0c;创建服务卡片&#xff0c;创建方法包括如下两种方式&#xff1a; 选…

SpringBoot自带的tomcat的最大连接数和最大的并发数

先说结果&#xff1a;springboot自带的tomcat的最大并发数是200&#xff0c; 最大连接数是&#xff1a;max-connectionsaccept-count的值 再说一下和连接数相关的几个配置&#xff1a; 以下都是默认值&#xff1a; server.tomcat.threads.min-spare10 server.tomcat.threa…

老隋蓝海项目temu跨境电商好不好做?

近年来&#xff0c;跨境电商成为我国对外贸易的新亮点&#xff0c;其中Temu作为拼多多旗下的新兴跨境电商平台&#xff0c;吸引了众多国内卖家参与。老隋作为行业内的知名人士&#xff0c;他对Temu跨境电商项目的评价备受关注。本文将分析老隋对Temu跨境电商的看法&#xff0c;…

RDMA内核态函数ib_post_send()源码分析

最近调用linux内核下RDMA的Verb API ib_post_send()出现了问题&#xff0c;因此从源码分析一下这个函数的调用过程。 我使用的内核版本为5.15.0-94 这是函数ib_post_send的头文件定义&#xff0c;这个函数的意义是向发送队列提交发送请求&#xff0c;他会调用qp对应设备的post_…

Pyglet综合应用|推箱子游戏地图编辑器之图片跟随鼠标

目录 推箱子游戏 升级一&#xff1a;鼠标操作 升级二&#xff1a;增加网格 升级三&#xff1a;模拟按钮 综合应用&#xff1a;地图编辑器 关卡地图洗数 推箱子游戏 本篇为之前写的博客《Pyglet综合应用&#xff5c;推箱子游戏之关卡图片载入内存》的续篇&#xff0c;内容…

项目:shell实现多级菜单脚本编写

目录 1. 提示 2. 演示效果 2.1. 一级菜单 2.2. 二级菜单 2.3. 执行操作 3. 参考代码 1. 提示 本脚本主要实现多级菜单效果&#xff0c;并没有安装LAMP、LNMP环境&#xff0c;如果要用在实际生成环境中部署LNMP、LAMP环境&#xff0c;只需要简单修改一下就可以了。 2. 演…

ASCII编码的影响与作用:数字化时代的不可或缺之物

title: ASCII编码的影响与作用&#xff1a;数字化时代的不可或缺之物 date: 2024/2/25 16:03:37 updated: 2024/2/25 16:03:37 tags: ASCII起源标准化字符文本处理基础编程语言基石数据库存储标准跨平台兼容多语言编码基础 一、ASCII编码的起源 ASCII&#xff08;American St…

matlab 三质量-弹簧系统受激振力

1、内容简介 略 44-可以交流、咨询、答疑 建立系统运动方程&#xff0c;研究固有频率和对应主振型 2、内容说明 略 三质量&#xff0d;弹簧系统受激振力&#xff0c;并不考虑各自的阻尼。建立系统运动方程。 解&#xff1a;由于阻尼对固有频率没有影响&#xff0c;故本文不…

浅谈数据分析工具在智慧城市中的作用

随着城市化、技术进步和人口不断增长&#xff0c;智慧城市已成为当今世界主要技术发展之一。 智慧城市设备依靠描述模型对城市环境产生的大量数据进行数据分析。 在这种城市景观中&#xff0c;智慧城市是技术和可持续的城市地区&#xff0c;利用信息和通信技术(ICT)来改善城市…

异步http和同步http原理和差异

开发服务器端程序时&#xff0c;一种常见的需求是&#xff0c;通过向另一个http服务器发送请求&#xff0c;获得数据。最常规的作法是使用同步http请求的方式&#xff0c;过程如下 这种方式简单好用&#xff0c;但是在高并发场景下有缺陷。在单线程环境下&#xff0c;程序发送h…

linux调用so库之一

任务&#xff1a;linux系统&#xff0c;已经生成so库&#xff0c;需要调用。 参考文献&#xff1a; Linux 调用动态库&#xff08;.SO文件&#xff09;总结_linux deviceio.so-CSDN博客 可以看他的第一部分&#xff0c;即显式调用。但是会报错&#xff0c;我的版本是64位的U…

【SpringBoot】Spring常用注解总结

目录 ⭐spring springmvc和springboot的区别 Autowired 和Resource的区别和联系 1. SpringBootApplication 2. Spring Bean 相关 2.1. Autowired 2.2. Component,Repository,Service, Controller 2.3. RestController 2.4. Scope 2.5. Configuration 3. 处理常见的 HT…

vue3(vite)+electron打包踩坑记录(1)

vue3(vite)electron打包踩坑记录 - 打包vue 第一步 编译vue 使用vite构建vue&#xff0c;package.json如下 {"name": "central-manager","private": true,"version": "0.0.0","type": "commonjs",&q…

Autosar 开篇

背景 AUTOSAR&#xff08;Automotive Open System Architecture&#xff09;是一个跨汽车行业的标准化软件架构&#xff0c;旨在促进汽车电子系统的开发和部署。下面是AUTOSAR发展的一些关键点&#xff1a; 起源和背景&#xff1a; AUTOSAR最初于2003年由汽车制造商宝马、戴姆…

x(x-1)的含义

一.二进制中x&(x-1)的含义 把x的二进制最后一个1变为0 找一下规律&#xff1a; 二.应用 我们可以利用这个特性&#xff0c;来数这个数字中有多少数字1 算法分析&#xff1a;放入一个计数器&#xff0c;每循环一次&#xff0c;就把这个数字的最后一个1变为0&#xff0c;计数…

【JavaEE】 spring boot的配置文件详解

spring boot的配置文件详解 文章目录 spring boot的配置文件详解常用配置spring boot的配置文件1. properties 文件2. YAML 文件3. 多环境配置4. 配置文件优先级5. 配置属性注入特殊说明 properties配置文件基本语法 例子peoperties文件的缺点 YML配置文件YML使用yml 配置不同数…

阿里云-系统盘-磁盘扩容

阿里云系统磁盘扩容 之前是测试环境磁盘用的默认的有 40G&#xff0c;后面升级到正式的 磁盘怕不够用打算升级到 100G&#xff0c; 系统镜像&#xff1a; Alibaba Cloud Linux 3.2104 LTS 64 位 磁盘 ESSD 40G 升级步骤&#xff1a; 扩容与创建快照 在阿里云后台首先去扩容…

【Docker】三、日志控制

三、日志控制 使用Docker部署服务器&#xff0c;要对Docker日志定时处理。否则&#xff0c;服务器运行一段时间后&#xff0c;磁盘占比报警。 出现磁盘占比报警&#xff0c;大概率是大文件的问题&#xff0c;可查看服务器中的大文件&#xff0c;排除问题。 &#xff08;一&am…

apache 模式、优化、功能 与 nginx优化、应用

一、I/O模型——Input/Output模型 1.同步/异步 A程序需要调用B程序的某一个功能&#xff0c;A发送一个请求需要B完成一个任务 同步&#xff1a;B不会主动去通知A是否完成需要A自己去问 异步&#xff1a;B会主动通知A是否完成 2.阻塞/非阻塞 A发送一个请求需要B完成一个任务 …