深度学习 精选笔记(13.2)深度卷积神经网络-AlexNet模型

学习参考:

  • 动手学深度学习2.0
  • Deep-Learning-with-TensorFlow-book
  • pytorchlightning

①如有冒犯、请联系侵删。
②已写完的笔记文章会不定时一直修订修改(删、改、增),以达到集多方教程的精华于一文的目的。
③非常推荐上面(学习参考)的前两个教程,在网上是开源免费的,写的很棒,不管是开始学还是复习巩固都很不错的。

深度学习回顾,专栏内容来源多个书籍笔记、在线笔记、以及自己的感想、想法,佛系更新。争取内容全面而不失重点。完结时间到了也会一直更新下去,已写完的笔记文章会不定时一直修订修改(删、改、增),以达到集多方教程的精华于一文的目的。所有文章涉及的教程都会写在开头、一起学习一起进步。

学习推荐:

  • https://blog.csdn.net/hjkdh/article/details/124565443
  • 卷积神经网络的深入理解-基础篇(卷积,激活,池化,误差反传)

1.特征提取的重要性

在LeNet提出后,卷积神经网络在计算机视觉和机器学习领域中很有名气。但卷积神经网络并没有主导这些领域。这是因为虽然LeNet在小数据集上取得了很好的效果,但是在更大、更真实的数据集上训练卷积神经网络的性能和可行性还有待研究。

在计算机视觉中,直接将神经网络与其他机器学习方法进行比较也许不公平。这是因为,卷积神经网络的输入是由原始像素值或是经过简单预处理(例如居中、缩放)的像素值组成的。但在使用传统机器学习方法时,从业者永远不会将原始像素作为输入。在传统机器学习方法中,计算机视觉流水线是由经过人的手工精心设计的特征流水线组成的。对于这些传统方法,大部分的进展都来自于对特征有了更聪明的想法,并且学习到的算法往往归于事后的解释。

因此,与训练端到端(从像素到分类结果)系统不同,经典机器学习的流水线看起来更像下面这样:

  • 获取一个有趣的数据集。在早期,收集这些数据集需要昂贵的传感器(在当时最先进的图像也就100万像素)。
  • 根据光学、几何学、其他知识以及偶然的发现,手工对特征数据集进行预处理。
  • 通过标准的特征提取算法,如SIFT(尺度不变特征变换)和SURF(加速鲁棒特征)或其他手动调整的流水线来输入数据。
  • 将提取的特征送入最喜欢的分类器中(例如线性模型或其它核方法),以训练分类器。

然而,推动领域进步的是数据特征,而不是学习算法。计算机视觉研究人员相信,从对最终模型精度的影响来说,更大或更干净的数据集、或是稍微改进的特征提取,比任何学习算法带来的进步要大得多。

2.学习表征

(1)另一种预测这个领域发展的方法————观察图像特征的提取方法。在2012年前,图像特征都是机械地计算出来的。事实上,设计一套新的特征函数、改进结果,并撰写论文是盛极一时的潮流。SIFT 、SURF 、HOG(定向梯度直方图)、bags of visual words和类似的特征提取方法占据了主导地位。

(2)另一组研究人员,包括Yann LeCun、Geoff Hinton、Yoshua Bengio、Andrew Ng、Shun ichi Amari和Juergen Schmidhuber,想法则与众不同:他们认为特征本身应该被学习。此外,他们还认为,在合理地复杂性前提下,特征应该由多个共同学习的神经网络层组成,每个层都有可学习的参数。在机器视觉中,最底层可能检测边缘、颜色和纹理。事实上,Alex Krizhevsky、Ilya Sutskever和Geoff Hinton提出了一种新的卷积神经网络变体AlexNet。在2012年ImageNet挑战赛中取得了轰动一时的成绩。

有趣的是,在网络的最底层,AlexNet模型学习到了一些类似于传统滤波器的特征抽取器。

AlexNet的更高层建立在这些底层表示的基础上,以表示更大的特征,如眼睛、鼻子、草叶等等。而更高的层可以检测整个物体,如人、飞机、狗或飞盘。最终的隐藏神经元可以学习图像的综合表示,从而使属于不同类别的数据易于区分。尽管一直有一群执着的研究者不断钻研,试图学习视觉数据的逐级表征,然而很长一段时间里这些尝试都未有突破。深度卷积神经网络的突破出现在2012年。突破可归因于两个关键因素:数据和硬件(GPU)。

2.1 缺少的成分:数据

包含许多特征的深度模型需要大量的有标签数据,才能显著优于基于凸优化的传统方法(如线性方法和核方法)。 然而,限于早期计算机有限的存储和90年代有限的研究预算,大部分研究只基于小的公开数据集。

例如,不少研究论文基于加州大学欧文分校(UCI)提供的若干个公开数据集,其中许多数据集只有几百至几千张在非自然环境下以低分辨率拍摄的图像。这一状况在2010年前后兴起的大数据浪潮中得到改善。

2009年,ImageNet数据集发布,并发起ImageNet挑战赛:要求研究人员从100万个样本中训练模型,以区分1000个不同类别的对象。ImageNet数据集由斯坦福教授李飞飞小组的研究人员开发,利用谷歌图像搜索(Google Image Search)对每一类图像进行预筛选,并利用亚马逊众包(Amazon Mechanical Turk)来标注每张图片的相关类别。这种规模是前所未有的。这项被称为ImageNet的挑战赛推动了计算机视觉和机器学习研究的发展,挑战研究人员确定哪些模型能够在更大的数据规模下表现最好。

2.2 缺少的成分:硬件

深度学习对计算资源要求很高,训练可能需要数百个迭代轮数,每次迭代都需要通过代价高昂的许多线性代数层传递数据。这也是为什么在20世纪90年代至21世纪初,优化凸目标的简单算法是研究人员的首选。然而,用GPU训练神经网络改变了这一格局。图形处理器(Graphics Processing Unit,GPU)早年用来加速图形处理,使电脑游戏玩家受益。GPU可优化高吞吐量的 4×4 矩阵和向量乘法,从而服务于基本的图形任务。幸运的是,这些数学运算与卷积层的计算惊人地相似。由此,英伟达(NVIDIA)和ATI已经开始为通用计算操作优化gpu,甚至把它们作为通用GPU(general-purpose GPUs,GPGPU)来销售。

3.AlexNet模型

论文:《ImageNet Classification with Deep ConvolutionalNeural Networks》

2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。 AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年ImageNet图像识别挑战赛。AlexNet已经被更有效的架构所超越,但它是从浅层网络到深层网络的关键一步。

完整的模型结构:
在这里插入图片描述

AlexNet和LeNet的架构非常相似,这里提供的是一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。

AlexNet和LeNet对比:
在这里插入图片描述
AlexNet和LeNet的设计理念非常相似,但也存在显著差异。

  • AlexNet比相对较小的LeNet5要深得多。AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。
  • AlexNet使用ReLU而不是sigmoid作为其激活函数。

3.1模型设计

在AlexNet的第一层,卷积窗口的形状是 11×11 。 由于ImageNet中大多数图像的宽和高比MNIST图像的多10倍以上,因此,需要一个更大的卷积窗口来捕获目标。 第二层中的卷积窗口形状被缩减为 5×5
,然后是 3×3 。 此外,在第一层、第二层和第五层卷积层之后,加入窗口形状为 3×3 、步幅为2的最大汇聚层。 而且,AlexNet的卷积通道数目是LeNet的10倍。

在最后一个卷积层后有两个全连接层,分别有4096个输出。 这两个巨大的全连接层拥有将近1GB的模型参数。 由于早期GPU显存有限,原版的AlexNet采用了双数据流设计,使得每个GPU只负责存储和计算模型的一半参数。 幸运的是,现在GPU显存相对充裕,所以现在很少需要跨GPU分解模型。

在这里插入图片描述
现在只需要简化即可,即取一个GPU中的结构即可。

3.2激活函数

AlexNet将sigmoid激活函数改为更简单的ReLU激活函数。 一方面,ReLU激活函数的计算更简单,它不需要如sigmoid激活函数那般复杂的求幂运算。 另一方面,当使用不同的参数初始化方法时,ReLU激活函数使训练模型更加容易。 当sigmoid激活函数的输出非常接近于0或1时,这些区域的梯度几乎为0,因此反向传播无法继续更新一些模型参数。 相反,ReLU激活函数在正区间的梯度总是1。 因此,如果模型参数没有正确初始化,sigmoid函数可能在正区间内得到几乎为0的梯度,从而使模型无法得到有效的训练。

3.3容量空值和预处理

AlexNet通过暂退法(DropOut)控制全连接层的模型复杂度,而LeNet只使用了权重衰减。 为了进一步扩充数据,AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。 这使得模型更健壮,更大的样本量有效地减少了过拟合。

Dropout、ReLU和预处理是提升计算机视觉任务性能的其他关键步骤。AlexNet已经被更有效的架构所超越,但它是从浅层网络到深层网络的关键一步。

3.4 模型结构与定义

模型结构:
在这里插入图片描述

import tensorflow as tf
from d2l import tensorflow as d2l


def net():
    return tf.keras.models.Sequential([
        # 这里使用一个11*11的更大窗口来捕捉对象。
        # 同时,步幅为4,以减少输出的高度和宽度。
        # 另外,输出通道的数目远大于LeNet
        tf.keras.layers.Conv2D(filters=96, kernel_size=11, strides=4,
                               activation='relu'),
        tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
        # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
        tf.keras.layers.Conv2D(filters=256, kernel_size=5, padding='same',
                               activation='relu'),
        tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
        # 使用三个连续的卷积层和较小的卷积窗口。
        # 除了最后的卷积层,输出通道的数量进一步增加。
        # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
        tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same',
                               activation='relu'),
        tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same',
                               activation='relu'),
        tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='same',
                               activation='relu'),
        tf.keras.layers.MaxPool2D(pool_size=3, strides=2),
        tf.keras.layers.Flatten(),
        # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
        tf.keras.layers.Dense(4096, activation='relu'),
        tf.keras.layers.Dropout(0.5),
        tf.keras.layers.Dense(4096, activation='relu'),
        tf.keras.layers.Dropout(0.5),
        # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
        tf.keras.layers.Dense(10)
    ])

构造一个高度和宽度都为224的(单通道数据,来观察每一层输出的形状)。 它与AlexNet架构相匹配。

X = tf.random.uniform((1, 224, 224, 1))
for layer in net().layers:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)
Conv2D output shape:	 (1, 54, 54, 96)
MaxPooling2D output shape:	 (1, 26, 26, 96)
Conv2D output shape:	 (1, 26, 26, 256)
MaxPooling2D output shape:	 (1, 12, 12, 256)
Conv2D output shape:	 (1, 12, 12, 384)
Conv2D output shape:	 (1, 12, 12, 384)
Conv2D output shape:	 (1, 12, 12, 256)
MaxPooling2D output shape:	 (1, 5, 5, 256)
Flatten output shape:	 (1, 6400)
Dense output shape:	 (1, 4096)
Dropout output shape:	 (1, 4096)
Dense output shape:	 (1, 4096)
Dropout output shape:	 (1, 4096)
Dense output shape:	 (1, 10)

3.5 Fashion-MNIST数据上训练AlexNet

将AlexNet直接应用于Fashion-MNIST的一个问题是,Fashion-MNIST图像的分辨率( 28×28 像素)低于ImageNet图像。

为了解决这个问题,将它们增加到 224×224 (通常来讲这不是一个明智的做法,但在这里这样做是为了有效使用AlexNet架构)。 这里需要使用d2l.load_data_fashion_mnist函数中的resize参数执行此调整。

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

这里使用更小的学习速率训练,这是因为网络更深更广、图像分辨率更高,训练卷积神经网络就更昂贵。

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

3.6一些注意事项

  • 在AlexNet中,较大的卷积层和全连接层需要更多的计算资源,因为它们涉及更多的矩阵乘法和加法运算。
  • 在AlexNet中,主要占用显存的部分是大型的卷积层和全连接层,这些层通常需要大量的参数和中间计算结果。
  • 修改批量大小可以影响训练的速度和模型精度,较大的批量大小通常可以减少训练时间,但也可能导致显存占用较多。需要权衡以获得最佳性能。
  • Fashion-MNIST数据集相比于传统的手写数字数据集MNIST更加复杂,但相对于ImageNet这样更大更复杂的数据集,Fashion-MNIST规模较小。AlexNet作为一个大型深度网络对于这样一个小数据集可能会显得过于复杂,容易发生过拟合。
  • 增加迭代轮数通常能够使模型在训练集上学习更多的特征,提高泛化能力。与LeNet相比,增加迭代轮数的模型可能会更加精细地学习数据中的模式,产生更好的性能。
  • 将Dropout和ReLU应用于LeNet-5可以帮助减轻过拟合问题并加速收敛,提升模型的泛化能力。预处理方法如数据归一化、数据增强等也可以提升模型性能,使其更好地学习数据中的模式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/464428.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++刷题】优选算法——动态规划第一辑

1.状态表示是什么?简答理解是dp表里的值所表示的含义怎么来的?题目要求经验题目要求分析问题的过程中,发现重复子问题 2.状态转移方程dp[i]......细节问题:3.初始化控制填表的时候不越界4.填表顺序控制在填写当前状态的时候&#…

【S5PV210_视频编解码项目】裸机开发:实现按键的外部中断处理

加粗样式本文所作内容: 基于S5PV210芯片实现按键的外部中断处理程序,搭建中断处理流程框架 S5PV210对于中断处理的操作流程 1 外部中断得到触发: 1)外部中断在初始化阶段得到使能 2)外界达到了外部中断的触发条件 …

手机网络连接性能API接口:查询手机网络连接性能状态

手机在网状态查询服务是一项非常方便的服务,可以帮助我们随时了解一个手机号码的在网状态。不论是查询自己的手机号码,还是查询他人的手机号码,这个服务都可以帮助我们获取准确的信息。今天,我想和大家介绍一个非常好用的手机在网…

运用html相关知识编写导航栏和二级菜单

相关代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><s…

30.HarmonyOS App(JAVA)鸿蒙系统app多线程任务分发器

HarmonyOS App(JAVA)多线程任务分发器 打印时间&#xff0c;记录到编辑框textfield信息显示 同步分发&#xff0c;异步分发&#xff0c;异步延迟分发&#xff0c;分组任务分发&#xff0c;屏蔽任务分发&#xff0c;多次任务分发 参考代码注释 场景介绍 如果应用的业务逻辑比…

【技术类-04】python实现docx表格文字和段落文字的“手动换行符(软回车)”变成“段落标记(硬回车)”

作品展示&#xff1a; 背景需求&#xff1a; 把python实现docx表格文字和段落文字的“手动换行符&#xff08;软回车&#xff09;”变成“段落标记&#xff08;硬回车&#xff09;合并在一起统计数量 【技术类-02】python实现docx段落文字的“手动换行符&#xff08;软回车&a…

Prometheus 轻量化部署和使用

文章目录 说明Prometheus简介Grafana简介prometheus和Grafana的关系环境准备&#xff08;docker&#xff09;docker安装时间时区问题&#xff08;我的代码中&#xff09;dockers镜像加速和服务器时区设置 数据库准备(mysql、redis)mysql配置redis配置 Prometheus、grafana下载和…

4-如何进行细分市场分析-03 竞争者分析

任何一个行业肯定都是有很多竞争者&#xff0c;我们如何判断这些竞争者对我们有什么样的威胁、什么样的机会、什么样的影响&#xff0c;我们需要去分析这些竞争者。 行业竞争格局如何分析&#xff1f; 我们可以从一些基本指标来入手&#xff0c;如市场集中度、行业利润率。 竞…

Win10系统使用IIS服务搭建WebDAV网站结合内网穿透公网访问本地文件

文章目录 推荐1. 安装IIS必要WebDav组件2. 客户端测试3. cpolar内网穿透3.1 打开Web-UI管理界面3.2 创建隧道3.3 查看在线隧道列表3.4 浏览器访问测试 4. 安装Raidrive客户端4.1 连接WebDav服务器4.2 连接成功4.2 连接成功总结&#xff1a; 推荐 前些天发现了一个巨牛的人工智能…

短剧小程序软件开发首页接口转发到Selectpage

工具&#xff1a;用的是uniapp开发 技术栈&#xff1a;vue、nide..js、云开发 用时&#xff1a;20工作天 软件&#xff1a;Hb、微信开发者工具 <?php namespace app\api\controller; use app\common\controller\Api; /** * 首页接口 */ class Index extends Api { …

算法思想总结:滑动窗口算法

创作不易&#xff0c;感谢三连 一.长度最小的数组 . - 力扣&#xff08;LeetCode&#xff09;长度最小的数组 class Solution { public:int minSubArrayLen(int target, vector<int>& nums) {int lenINT_MAX,nnums.size(),sum0;//len必须要给一个很大的数&#xf…

【LeetCode每日一题】2684. 矩阵中移动的最大次数

文章目录 [2684. 矩阵中移动的最大次数](https://leetcode.cn/problems/maximum-number-of-moves-in-a-grid/)思虑&#xff1a;代码&#xff1a; 2684. 矩阵中移动的最大次数 思虑&#xff1a; 1.将第一列的所有行坐标&#xff0c;用IntStream 来生成一个范围 [0, m) 内的整数…

reloading,一个很实用的Python库!

Python是一门非常流行的编程语言&#xff0c;它的广泛应用和丰富的第三方库使得开发者们能够轻松完成各种任务。reloading是Python中一个强大的库&#xff0c;它能够在程序运行时重新加载修改过的模块&#xff0c;为开发者提供了便利和灵活性。本文将全面介绍reloading库&#…

警惕MKP勒索病毒,您需要知道的预防和恢复方法。

引言&#xff1a; 在网络世界中&#xff0c;.mkp勒索病毒是一股威胁不可小觑的黑暗势力。它以其毒辣的加密手段威胁着我们的数据安全。本文将深入介绍.mkp勒索病毒&#xff0c;揭示如何恢复被其加密的数据文件&#xff0c;并分享一些预防措施&#xff0c;助您在数字世界中安全…

整数和浮点数在内存中存储及题目

一、整数在内存中存储 整数的2进制表⽰⽅法有三种&#xff0c;即原码、反码和补码。三种表⽰⽅法均有符号位和数值位两部分&#xff0c;符号位都是⽤0表⽰“正”&#xff0c;⽤1表⽰“负”&#xff0c;⽽数值位最⾼位的⼀位是被当做符号位&#xff0c;剩余的都是数值位 正整数…

使用ChatGPT高效完成简历制作[中篇]-有爱AI实战教程(五)

演示站点&#xff1a; https://ai.uaai.cn 对话模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 导读&#xff1a;在使用 ChatGPT 时&#xff0c;当你给的指令越精确&#xff0c;它的回答会越到位&#xff0c;举例来说&#xff0c;假如你要请它帮忙写文案&#xff0c;如果没…

【JS进阶】第一天

参考视频——黑马程序员 JavaScript 进阶 - 第 1 天 学习作用域、变量提升、闭包等语言特征&#xff0c;加深对 JavaScript 的理解&#xff0c;掌握变量赋值、函数声明的简洁语法&#xff0c;降低代码的冗余度。 理解作用域对程序执行的影响能够分析程序执行的作用域范围理解闭…

后端程序员入门react笔记(八)-redux的使用和项目搭建

一个更好用的文档 添加链接描述 箭头函数的简化 //简化前 function countIncreAction(data) {return {type:"INCREMENT",data} } //简化后 const countIncreAction data>({type:"INCREMENT",data })react UI组件库相关资料 组件库连接和推荐 antd组…

electron 学习

const { app, BrowserWindow } require(electron); const path require(path); function createWindow () {let mainWin new BrowserWindow({x: 100,y: 100,show:false, // 默认不显示窗体width: 800,height: 800,maxHeight: 1000,maxWidth: 1000,minHeight: 400,minWidth: …

Linux学习(4)——使用编辑器

1.gedit编辑器 简单易懂&#xff0c;依赖图形界面。可以使用ctrlc ctrlv等快捷键&#xff0c;ctrls进行保存&#xff0c;与windows系统中相类似。 2.vi/vim编辑器 vi/vim可以直接通过控制台的终端完成文本的编辑&#xff0c;不依赖图形界面&#xff0c;使用范围更广。它的编辑…
最新文章