JVM 垃圾回收机制:探秘对象生死判定与高效回收算法

        

目录

一、JVM 对象生死判定

        1.1 引用技术算法

        1.2 可达性分型算法

二、引用

三、 回收方法区

四、垃圾回收算法

        4.1 标记-清楚算法

        4.2 标记-复制算法

        4.3 标记-整理算法


        JVM 程序计数器、虚拟机栈、本地方法栈随着线程而生,随着线程而灭。栈中的栈帧随着方法的进入和退出而有条不紊的执行着出栈和入栈操作,因此这几个区域的内存回收都具备确定性。而 Java 堆和方法区则有着显著的不确定性:一个接口的多个实现类需要的内存可能不一样,一个方法锁执行的不同条件分支所需的内存也可能不一样。

一、JVM 对象生死判定

        在 Java 堆里存放着 Java 世界中几乎所有的实例对象,垃圾收集器对堆进行回收前,第一件事就是要确定这些对象之中哪些还存活着,哪些已经死亡了。     

        1.1 引用技术算法

        在对象中添加一个计数器,每当有一个地方引用它时,计数器就加一。当引用失效时,计数器值就减一。任何时刻计数器为零的对象就是不可能被使用的。

        引用计数算法虽然额外占用了一些内存空间来进行计算,但他的原理简单,判定效率高,也有些著名的应用案例。但在 Java 领域,至少主流的 Java 虚拟机里面都没有选用引用计数法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须配合大量额外处理才能保证正确的工作,比如单纯的引用计数就很难解决循环引用的问题。

        1.2 可达性分型算法

        当前主流的商用程序语言的内存管理子系统,都是通过可达性分析(Reachablity Analysis)算法来判断存活的。这个算法的基本思路是通过一些列称为 GC ROOT 的根对象作为起始节点,从这些节点开始,根据引用关系向下搜索,搜索过程所走的路径称为引用链,如果某个对象到GC Roots 之间有任何引用链相连,或者用图论的话说是从 GC Roots 到这个对象不可达,则证明此对象是不可能再被使用了。

       在 Java 技术体系里,固定可作为 GC Roots 的对象包括以下几种:

  • 在虚拟机栈中引用的对象,比如各个线程被调用的方法中使用的参数、局部变量、临时变量等;
  • 在方法区中类静态属性引用的对象;
  • 在方法区中常量引用的对象,比如字符串常量池里的引用;
  • 在本地方法栈中 JNI 引用的对象;
  • Java 虚拟机内部的引用,基本数据类型对应的 Class 对象,一些常驻的异常对象、类加载器等;
  • 所有被同步锁 synchronized 持有的对象;
  • 反应 Java 内部情况的 JMXBean、JVM 中注册的回调、代码缓存等。

        总结,GC Roots根主要包括:类加载器、Thread、虚拟机栈的本地变量表、static成员、常量引用、本地方法栈的变量等等。

        即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”,这时候他们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在可达性分析后没有与 GC Roots 相连的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。假如对象没有覆盖 finalize() 方法,或者 finalize() 方法已经被虚拟机调用过,那么虚拟机将这两种情况均视为“没有必要执行”。

        如果这个对象被判定为有必要执行 finalize() 方法,那么该对象会被放置在一个名为 F-Queue 的队列之中并在稍后有一条虚拟机建立的、低调度优先级放入 Finalizer 线程区执行它们的 finalize() 方法。finalize() 方法是对象逃脱死亡的最后一次机会,稍后收集器将对 F-Queue 中的对象进行第二次小规模的标记,如果对象在 finalize() 成功拯救自己(只要重新与引用链建立关联即可),那在第二次标记时他将被移除即将回收的集合;如果这个时候还没有逃脱,那么基本上它真的要被回收了。

二、引用

        无论是通过引用计数器算法来判断对象的引用数量,还是通过可达性分析算法来判断对象是否引用链可达,判定对象的存活条件都和“引用”离不开关系。

        JDK1.2之后,Java 将引用分为强引用(Strongly Refrence)、软引用(Soft Refrence)、弱引用(Weak Refrence)和虚引用(Phantom Refrence)4种,这四种引用强度一次减弱。

  • 强引用:是最传统的引用定义,是指在程序代码中普遍存在的引用赋值,即 A a = new A();这种引用关系。无论在何种情况下,只要强引用关系存在,垃圾收集器就永远不会回收掉被引用的对象。
  • 软引用:是用来描述一些还有用,但并非必须的对象,只要软引用关联着对象,在系统将要发生内存溢出异常前,会把这些对象列进垃圾回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。JDK1.2 之后提供了SoftRefrence类来实现软引用。遇到 GC 先判断内存够不够,不够才会被回收。

        软引用非常适合做缓存,空间够用时不会回收,空间不够用了才被回收掉。

  • 弱引用:用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作时,无论当前内存是否足够,都会回收掉被弱引用关联的对象。在 JDK1.2 之后提供了 WeakRefrence 类来实现弱引用。只要遇到 GC 就会被回收。
  • 虚引用:也称为幽灵引用或者幻影引用,他是最弱的一种引用关系。一个对象有虚引用的存在,完全不会对其生存构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的是为了在这个对象被收集器回收时收到一个系统通知。在 JDK1.2 之后提供了 PhantomRefrence 类来实现虚引用。
ReferenceQueue<A> queue = new ReferenceQueue<>();
PhantomReference<A> phantom = new PhantomReference<>(new A(), queue);

        虚引用需要用到一个队列 queue,当虚引用的对象被回收的时候信息会被填到队列里。当对象被回收时知道它被回收了,可以收到一个通知。

        虚引用可以用来回收堆外内存。当对象被回收时,通过 queue 可以检测到,然后清理掉堆外内存。比如回收 NIO 的直接内存。

三、 回收方法区

        方法区的回收成果比较低。方法区回收主要回收废弃的常量和不再被使用的类型。回收废弃的常量比较好理解,没有任何对象引用这个常量了,且虚拟机没有其他地方引用这个字面常量。

        回收不再被使用的类型条件比较苛刻,需要同时满足三个条件:

  • 该类型所有的实例都已经被回收,也就是 Java 堆中不存在该类及其任何派生子类的实例。
  • 加载该类的类加载器已经被回收,这个条件除非经过精心设计的可替换类加载起的场景,如OSGI、JSP 的重加载,否则很难达到
  • 该类对应的 Java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

        在使用反射、动态代理、CGLib 等字节码框架等场景中,通常都需要 Java 虚拟机具备类型卸载能力,以保证不会对方法区造成过大的内存压力。

四、垃圾回收算法

        当前商业虚拟机的垃圾收集器,大多数都遵循“分代收集”的理论。常用垃圾收集器的设计原则:收集器将 Java 堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。

        显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把他们集中在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低的代价回收较大的空间;如果剩下的都是难以消亡的对象,把他们集中在一起,虚拟机便可以用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。

        在 Java 堆划分出不同的区域之后,垃圾收集器才可以每次只回收其中某一个或某些部分的区域,因而才有了“Minor GC/Young Gc、Major Gc/Old Gc、Full GC”这些类型的划分。也才能够针对不同区域安排与存储对象的存亡特征相匹配的垃圾收集算法,因而发展出了“标记-复制算法、标记-清除算法、标记-整理算法”。Java 堆至少会划分为新生代(Young Generation)和老年代(Old Generation)两个区域。

        4.1 标记-清楚算法

        算法分为标记和清除两个阶段,首先标记出所有需要回收的对象,在标记完成后,统一回收所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。

        标记清楚算法存在如下缺点:

  • 执行效率不稳定,如果 Java 堆中存在大量对象,而其中大部分是需要回收的,这时就需要进行大量的标记和清除动作,导致标记和清除随着对象数量的增多而效率降低
  • 存在内存碎片化,标记、清楚后会存在大量不连续的内存碎片,空间碎片太多可能会导致以后再程序过程中需要分配较大对象时无法找到连续的内存空间而不得不提前触发垃圾收集

        4.2 标记-复制算法

        标记-复制算法常被称为复制算法。为了解决标记-清除算法面对大量可回收对象执行效率低的问题,提出了一种半区复制的垃圾收集算法,将可用内存分为大小相等的两块,每次只是用其中的一块。当这一块内存用完了,就将还存活的对象复制到另一块上面,然后在把已使用过的内存空间一次性清理掉。如果大多数对象是存活的,这种算法将产生大量的内存复制的开销。但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时就不用考虑空间碎片的复杂情况,只要移动栈顶指针,按顺序分配即可。

        标记-复制算法的缺点是:将可用内存缩小为原来的一半,空间浪费太多。

        后来又提出一种新的回收方式。将新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只是用Eden和其中的一块Survivor。发生垃圾收集时,将Eden和Survivor中仍然存活的对象一次性复制到另一块Survivor空间上然后直接清掉Eden和那块Survicor空间。HostSpot默认Eden和Survovor比例为8:1。

        4.3 标记-整理算法

        标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率降低。提出了标记-整理算法,其中标记过程一样,但后续步骤不同,而是让存活的对象向内存空间的一端移动,然后直接清理掉边界以外的内存。

        针对老年代对象的特征,提出了一种针对性的标记-整理算法。其中的标记过程依然与标记-清除算法中的标记一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间的一端移动,然后直接清理掉边界以外的内存。

        标记清除与标记整理算法的本质差异是前者是一种非移动式的回收算法,而后者是移动式的。

往期经典推荐

JVM内存模型深度解读-CSDN博客

Synchronized同步锁的全方位剖析与实战运用-CSDN博客

Spring Cloud全方位解读——构建微服务架构的利器-CSDN博客

你真的了解Tomcat一键启停吗?-CSDN博客

Redis缓存危机大揭秘:雪崩、击穿与穿透——从理论到实战防御策略_redis缓存雪崩、穿透以及技术预防-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/471019.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

接雨水 - LeetCode 热题 7

大家好&#xff01;我是曾续缘&#x1f48c; 今天是《LeetCode 热题 100》系列 发车第 7 天 双指针第 4 题 ❤️点赞 &#x1f44d; 收藏 ⭐再看&#xff0c;养成习惯 接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨…

探索未来教育:在线教育微服务的革新之路

随着互联网技术的不断发展&#xff0c;在线教育已经成为现代教育领域的重要组成部分。而在在线教育的发展过程中&#xff0c;微服务架构的应用正逐渐引起人们的关注和探讨。本文将深入探讨在线教育微服务的概念、优势以及未来发展趋势。 ## 什么是在线教育微服务&#xff1f; …

Go——切片

1. 特点 slice并不是数组或数组指针。它通过内部指针和相关属性引用数组片段&#xff0c;以实现变长方案。 切片&#xff1a;切片是数组的一个引用&#xff0c;因此切片是引用类型。但自身是结构体&#xff0c;值拷贝传递。切片的长度可以改变&#xff0c;因此&#xff0c;切片…

Visual Studio 2013 - 清理

Visual Studio 2013 - 清理 1. 清理1.1. 工程清理1.2. 解决方案清理 References 1. 清理 Debug Release 1.1. 工程清理 (right mouse click on the project) -> 清理 1.2. 解决方案清理 (right mouse click on the solution) -> 清理解决方案 References [1] Yongq…

vue元素声明之后未使用的解决方法

错误情况&#xff1a;类似的这种元素声明未使用的情况 解决方法 方法一 将lintOnSave :false 改为lintOnSave:true 方法二 在项目中找到package.json........① 使用快捷键Ctrl F 搜索eslintconfig........② 找到eslintconfig..........③ 找到rules .........④ 添…

隐语笔记1 —— 数据可信流通,从运维信任到技术信任

数据可信流通体系 关于可信的反思 信任是涉及交易或交换关系的基础 信任的基石&#xff1a; 身份可确认利益可依赖能力有预期行为有后果 数据流通中的不可信风险&#xff1a;可信链条失效&崩塌 法规层面&#xff1a;数据的持有权&#xff0c;加工权&#xff0c;经营权…

Restful API 日期时间格式与 ISO 8601

Restful API 日期时间格式 Restful API 在传递日期类型的参数时&#xff0c;应该使用什么格式&#xff1f; 查询参数、请求体参数、响应中的日期类型的字段&#xff0c;用什么格式合适&#xff1f; 在 RESTful API 中传递日期类型的参数时&#xff0c;通常建议采用一种普遍可解…

485问题汇总

485问题汇总 485 通信波形没有负电压 问题描述&#xff1a;设备在没有外设的时候通信波形是正常的&#xff0c;即5V可以出来&#xff0c;在连接上设备后&#xff0c;设备的通信波形的-5V会随着设备的增多&#xff0c;电压会慢慢上升。当设备连接到24台设备后&#xff0c;485总…

【C#】数组string类型输出

示例 代码 internal class Program{static void Main(string[] args){List<int> list new List<int>() { 1,2,3,4,5,6,7,8,9,10};string output1 string.Join(",", list);Console.WriteLine(output1);string output2 string.Join("\n", lis…

数据结构(五)——树的基本概念

五、树 5.1 树的基本概念 5.1.1 树的定义 树是n(n>0)个结点的有限集合&#xff0c;结点数为0的树称为空树 非空树的特性 有且仅有一个根节点没有后继的结点称为“叶子结点”&#xff08;或终端结点&#xff09;有后继的结点称为“分支结点”&#xff08;或非终端结点&a…

Java项目基于SpringBoot和Vue的时装购物系统的设计与实现

今天要和大家聊的是一款基于SpringBoot和Vue的时装购物系统。 &#x1f495;&#x1f495;作者&#xff1a;李同学 &#x1f495;&#x1f495;个人简介&#xff1a;混迹在java圈十年有余&#xff0c;擅长Java、微信小程序、Python、Android等&#xff0c;大家有这一块的问题可…

OPPO 后端二面,凉凉。。。

美众议院通过 TikTok 法案 之前我们讲了 老美要求字节跳动在 165 天内剥离短视频应用 TikTok&#xff0c;当时的最新进度是 TikTok 给 1.7 亿美国用户发弹窗&#xff0c;发动用户群众给国会打电话进行抗议。 但显然这点力度的抗议并不会造成什么实质影响。 昨晚&#xff0c;美国…

SpringBoot与SpringCloud的版本对应详细版

在实际开发过程中&#xff0c;我们需要详细到一一对应的版本关系&#xff1a;Spring 官方对应版本地址&#xff1a; (https://start.spring.io/actuator/info)&#xff0c;建议用firefox浏览器打开&#xff0c;你会看见格式化好了json信息&#xff1a; 手动记录一些经本人实际…

【译】矢量数据库 101 - 什么是矢量数据库?

原文地址&#xff1a;Vector Database 101 - What is a Vector Database? 1. 简介 大家好——欢迎回到 Milvus 教程。在上一教程中&#xff0c;我们快速浏览了每天产生的日益增长的数据量。然后&#xff0c;我们介绍了如何将这些数据分成结构化/半结构化数据和非结构化数据&…

使用WordPress在US Domain Center上建立招聘网站的详细教程

第一部分&#xff1a;介绍招聘网站 招聘网站是指用于发布招聘信息、吸引求职者、进行简历筛选和管理招聘流程的网站。在WordPress中&#xff0c;您可以轻松地创建一个功能齐全的招聘网站&#xff0c;以便企业能够方便地管理招聘流程&#xff0c;并为求职者提供信息和应聘渠道。…

论文浅尝 | GPT-RE:基于大语言模型针对关系抽取的上下文学习

笔记整理&#xff1a;张廉臣&#xff0c;东南大学硕士&#xff0c;研究方向为自然语言处理、信息抽取 链接&#xff1a;https://arxiv.org/pdf/2305.02105.pdf 1、动机 在很多自然语言处理任务中&#xff0c;上下文学习的性能已经媲美甚至超过了全资源微调的方法。但是&#xf…

力扣Lc18--- 168. Excel表列名称(java版)-2024年3月19日

1.题目描述 2.知识点 注1&#xff1a;StringBuilder 对象的 insert() 方法用于在字符串的指定位置插入字符或字符序列。这里的第一个参数是插入位置的索引&#xff0c;而第二个参数是要插入的字符或字符序列。 public class InsertExample {public static void main(String[…

彻底学会系列:一、机器学习之梯度下降(2)

1 梯度具体是怎么下降的&#xff1f; ∂ J ( θ ) ∂ θ \frac{\partial J (\theta )}{\partial \theta} ∂θ∂J(θ)​&#xff08;损失函数&#xff1a;用来衡量模型预测值与真实值之间差异的函数&#xff09; 对损失函数求导&#xff0c;与学习率相乘&#xff0c;按梯度反方…

搭建基于 Snowflake 的 CI/CD 最佳实践!

Snowflake 提供了可扩展的计算和存储资源&#xff0c;和基于 SQL 的界面 Snowsight&#xff0c;方便用户进行数据操作和分析。然而&#xff0c;如果用户想将自己的 CI/CD 流程与 Snowflake 集成时&#xff0c;会发现一些不便之处&#xff08;尤其相比其 SnowSight 优秀的查询能…

三段提交的理解

三阶段提交是在二阶段提交上的改进版本&#xff0c;3PC 最关键要解决的就是协调者和参与者同时挂掉的问题&#xff0c;所以3PC把2PC的准备阶段再次一分为二&#xff0c;这样三阶段提交。 处理流程如下 &#xff1a; 阶段一 协调者向所有参与者发出包含事务内容的 canCommit …
最新文章