浅谈偏向锁、轻量级锁、重量级锁

为了换取性能,JVM在内置锁上做了非常多的优化,膨胀式的锁分配策略就是其一。理解偏向锁、轻量级锁、重量级锁的要解决的基本问题,几种锁的分配和膨胀过程,有助于编写并优化基于锁的并发程序。

内置锁的分配和膨胀过程较为复杂,限于时间和精力,文中该部分内容是根据网上的多方资料整合而来;仅为方便查阅,后面继续分析JVM源码的时候也有个参考。如果对各级锁已经有了基本了解,读者大可跳过此文。

隐藏在内置锁下的基本问题

内置锁是JVM提供的最便捷的线程同步工具,在代码块或方法声明上添加synchronized关键字即可使用内置锁。使用内置锁能够简化并发模型;随着JVM的升级,几乎不需要修改代码,就可以直接享受JVM在内置锁上的优化成果。从简单的重量级锁,到逐渐膨胀的锁分配策略,使用了多种优化手段解决隐藏在内置锁下的基本问题。

重量级锁

内置锁在Java中被抽象为监视器锁(monitor)。在JDK 1.6之前,监视器锁可以认为直接对应底层操作系统中的互斥量(mutex)。这种同步方式的成本非常高,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。因此,后来称这种锁为“重量级锁”。

自旋锁

首先,内核态与用户态的切换上不容易优化。但通过自旋锁,可以减少线程阻塞造成的线程切换(包括挂起线程和恢复线程)。

如果锁的粒度小,那么锁的持有时间比较短(尽管具体的持有时间无法得知,但可以认为,通常有一部分锁能满足上述性质)。那么,对于竞争这些锁的而言,因为锁阻塞造成线程切换的时间与锁持有的时间相当,减少线程阻塞造成的线程切换,能得到较大的性能提升。具体如下:

  • 当前线程竞争锁失败时,打算阻塞自己

  • 不直接阻塞自己,而是自旋(空等待,比如一个空的有限for循环)一会

  • 在自旋的同时重新竞争锁

  • 如果自旋结束前获得了锁,那么锁获取成功;否则,自旋结束后阻塞自己

如果在自旋的时间内,锁就被旧owner释放了,那么当前线程就不需要阻塞自己(也不需要在未来锁释放时恢复),减少了一次线程切换。

“锁的持有时间比较短”这一条件可以放宽。实际上,只要锁竞争的时间比较短(比如线程1快释放锁的时候,线程2才会来竞争锁),就能够提高自旋获得锁的概率。这通常发生在锁持有时间长,但竞争不激烈的场景中。

缺点
  • 单核处理器上,不存在实际的并行,当前线程不阻塞自己的话,旧owner就不能执行,锁永远不会释放,此时不管自旋多久都是浪费;进而,如果线程多而处理器少,自旋也会造成不少无谓的浪费。

  • 自旋锁要占用CPU,如果是计算密集型任务,这一优化通常得不偿失,减少锁的使用是更好的选择。

  • 如果锁竞争的时间比较长,那么自旋通常不能获得锁,白白浪费了自旋占用的CPU时间。这通常发生在锁持有时间长,且竞争激烈的场景中,此时应主动禁用自旋锁。

使用-XX:-UseSpinning参数关闭自旋锁优化;-XX:PreBlockSpin参数修改默认的自旋次数。

自适应自旋锁

自适应意味着自旋的时间不再固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定:

  • 如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而它将允许自旋等待持续相对更长的时间,比如100个循环。

  • 相反的,如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能减少自旋时间甚至省略自旋过程,以避免浪费处理器资源。

自适应自旋解决的是“锁竞争时间不确定”的问题。JVM很难感知到确切的锁竞争时间,而交给用户分析就违反了JVM的设计初衷。自适应自旋假定不同线程持有同一个锁对象的时间基本相当,竞争程度趋于稳定,因此,可以根据上一次自旋的时间与结果调整下一次自旋的时间

缺点

然而,自适应自旋也没能彻底解决该问题,如果默认的自旋次数设置不合理(过高或过低),那么自适应的过程将很难收敛到合适的值

轻量级锁

自旋锁的目标是降低线程切换的成本。如果锁竞争激烈,我们不得不依赖于重量级锁,让竞争失败的线程阻塞;如果完全没有实际的锁竞争,那么申请重量级锁都是浪费的。轻量级锁的目标是,减少无实际竞争情况下,使用重量级锁产生的性能消耗,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。

顾名思义,轻量级锁是相对于重量级锁而言的。使用轻量级锁时,不需要申请互斥量,仅仅将Mark Word中的部分字节CAS更新指向线程栈中的Lock Record,如果更新成功,则轻量级锁获取成功,记录锁状态为轻量级锁;否则,说明已经有线程获得了轻量级锁,目前发生了锁竞争(不适合继续使用轻量级锁),接下来膨胀为重量级锁

Mark Word是对象头的一部分;每个线程都拥有自己的线程栈(虚拟机栈),记录线程和函数调用的基本信息。二者属于JVM的基础内容,此处不做介绍。

当然,由于轻量级锁天然瞄准不存在锁竞争的场景,如果存在锁竞争但不激烈,仍然可以用自旋锁优化,自旋失败后再膨胀为重量级锁

缺点

同自旋锁相似:

  • 如果锁竞争激烈,那么轻量级将很快膨胀为重量级锁,那么维持轻量级锁的过程就成了浪费。

偏向锁

在没有实际竞争的情况下,还能够针对部分场景继续优化。如果不仅仅没有实际竞争,自始至终,使用锁的线程都只有一个,那么,维护轻量级锁都是浪费的。偏向锁的目标是,减少无竞争且只有一个线程使用锁的情况下,使用轻量级锁产生的性能消耗。轻量级锁每次申请、释放锁都至少需要一次CAS,但偏向锁只有初始化时需要一次CAS。

“偏向”的意思是,偏向锁假定将来只有第一个申请锁的线程会使用锁(不会有任何线程再来申请锁),因此,只需要在Mark Word中CAS记录owner(本质上也是更新,但初始值为空),如果记录成功,则偏向锁获取成功,记录锁状态为偏向锁,以后当前线程等于owner就可以零成本的直接获得锁;否则,说明有其他线程竞争,膨胀为轻量级锁

偏向锁无法使用自旋锁优化,因为一旦有其他线程申请锁,就破坏了偏向锁的假定。

缺点

同样的,如果明显存在其他线程申请锁,那么偏向锁将很快膨胀为轻量级锁。

不过这个副作用已经小的多。

如果需要,使用参数-XX:-UseBiasedLocking禁止偏向锁优化(默认打开)。

小结

偏向锁、轻量级锁、重量级锁分配和膨胀的详细过程见后。会涉及一些Mark Word与CAS的知识。

偏向锁、轻量级锁、重量级锁适用于不同的并发场景:

  • 偏向锁:无实际竞争,且将来只有第一个申请锁的线程会使用锁。

  • 轻量级锁:无实际竞争,多个线程交替使用锁;允许短时间的锁竞争。

  • 重量级锁:有实际竞争,且锁竞争时间长。

另外,如果锁竞争时间短,可以使用自旋锁进一步优化轻量级锁、重量级锁的性能,减少线程切换。

如果锁竞争程度逐渐提高(缓慢),那么从偏向锁逐步膨胀到重量锁,能够提高系统的整体性能。

锁分配和膨胀过程

重申,这部分主要是根据网上的多方资料整理。核心是这位巨巨整理的流程图,相当详细,基本符合逻辑。

前面讲述了内置锁在使用过程中的一些基本问题和解决方案,实现原理一笔带过。详细的锁分配和膨胀过程如下:

锁分配和膨胀过程

图中有一处疑问:

按照图中流程,如果发现锁已经膨胀为重量级锁,就直接使用互斥量mutex阻塞当前线程

然而,自旋锁的一大好处就是减少线程切换的开销。在这里没有必要直接阻塞当前线程,大可以像轻量级锁一样,自旋一会,失败了再阻塞。

特别说明两点:

  • CAS记录owner时,*expected == null*,newValue == ownerThreadId,因此,只有第一个申请偏向锁的线程能够返回成功,后续线程都必然失败(部分线程检测到可偏向,同时尝试CAS记录owner)。

  • 内置锁只能沿着偏向锁、轻量级锁、重量级锁的顺序逐渐膨胀,不能“收缩”。这基于JVM的另一个假定,“一旦破坏了上一级锁的假定,就认为该假定以后也必不成立”。

另外,当重量级锁被解除后,需要唤醒一个被阻塞的线程,这部分逻辑与ReentrantLock基本相同,详见源码|并发一枝花之ReentrantLock与AQS(1):lock、unlock。

简化版

上图记载的很详细,也有Mark Word的图解。看懂上图后,再来看《深入理解Java虚拟机:JVM高级特性与最佳实践(第2版)》中的简化版流程图就能看懂了:

图片

简化版锁分配和膨胀过程

挖坑:

简化版中指出了重偏向过程。这一过程对于性能优化和膨胀过程都非常重要;但如果考虑重偏向的话,可能上述特别说明的内容就不成立了。要整理的笔记太多啦时间不够啊,猴子选择暂时放弃这个问题,,,恩,挖个坑,以后再追源码填坑。

重偏向和epoch的作用参考:

  • BiasedLocking模式下markOop中位域epoch的根本作用是什么?


参考:

  • Java Synchronised机制

  • Java偏向锁是如何撤销的?

原文地址: 浅谈偏向锁、轻量级锁、重量级锁

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/518637.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python学习: 错误和异常

Python 语法错误 解析错误(Parsing Error)通常指的是程序无法正确地解析(识别、分析)所给定的代码,通常是由于代码中存在语法错误或者其他无法理解的结构导致的。这可能是由于缺少括号、缩进错误、未关闭的引号或其他括号等问题造成的。 语法错误(Syntax Error)是指程序…

创新性的智慧公厕技术研发与应用

智慧公厕,作为城市基础设施的重要组成部分,扮演着提供舒适便捷卫生服务的角色。智慧公厕源头实力厂家广州中期科技有限公司,通过技术创新与应用升级,打造标杆性的智慧公厕整体解决方案。通过创新性的技术应用,智慧公厕…

Redis入门--头歌实验Redis事务与流水线

任务描述 本关任务:编写一个商品交易平台的后端处理逻辑。 相关知识 手机、互联网普遍的当下,系统会同时处理多客户端的请求,而在多客户端同时处理相同的数据时,数据一致性就变得十分重要,稍不谨慎的操作就会导致数据出…

Linux操作系统逻辑、线性、物理地址,带你轻松理解Linux运维-Hook机制

虚拟内存(Virtual Memory)是指计算机呈现出要比实际拥有的内存大得多的内存量。因此他允许程式员编制并运行比实际系统拥有的内存大得多的程式。这使得许多大型项目也能够在具有有限内存资源的系统上实现。一个非常恰当的比喻是:你不必非常长…

Replication Controller、ReplicaSet和Deployment(Kubernetes调度系列,结合操作命令讲解)

目录 一、概述 二、Replication Controller 2.1 Replication Controller 说明 2.2 Replication Controller 举例 三、ReplicaSet 3.1 ReplicaSet说明 3.2 ReplicaSet 举例 四、无状态应用管理Deployment 4.1 概述 4.2 创建Deployment 4.2.1 Deployment 标签内容解析 …

视频分块上传Vue3+SpringBoot3+Minio

文章目录 一、简化演示分块上传、合并分块断点续传秒传 二、更详细的逻辑和细节问题可能存在的隐患 三、代码示例前端代码后端代码 一、简化演示 分块上传、合并分块 前端将完整的视频文件分割成多份文件块,依次上传到后端,后端将其保存到文件系统。前…

C++教学——从入门到精通 9.比大小

如果叫你比较a,b,c的大小并排序都会吧&#xff0c;先用我们学过的方法做 #include"iostream" using namespace std; int main(){int a,b,c;cin>>a>>b>>c;if(a>b&&a>c){if(b>c)cout<<c<<" "<<b;else…

Vue2电商前台项目(二):完成Home首页模块业务

一、项目开发的步骤 1、书写静态页面&#xff08;HTML&#xff0c;CSS&#xff09; 2、拆分组件 3、获取服务器的数据动态展示 4、完成相应的动态业务逻辑 经过分析之后&#xff0c;Home首页可以拆分为7个组件&#xff1a;TypeNav三级联动导航&#xff0c;ListContainer&…

先进电机技术 —— 无线电机

一、背景 无线电能传输电机是一种创新的电机设计&#xff0c;它结合了无线电能传输技术与传统的电机工作原理。这种电机的主要特点是通过无线方式传输电能&#xff0c;从而消除了传统电机中需要有线连接的限制&#xff0c;提高了系统的灵活性和可靠性。 无线电能传输技术主要…

C51实现每秒向电脑发送数据(UART的含义)

其实核心的问题是&#xff1a;串口的通信方式 异步串行是指UART&#xff08;Universal Asynchronous Receiver/Transmitter&#xff09;&#xff0c;UART包含TTL电平的串口和RS232电平的串口 UART要实现异步通信的&#xff1a; UART是异步串行接口&#xff0c;通信双方使用时…

LeetCode每日一题之专题一:双指针 ——快乐数

快乐数OJ链接&#xff1a;202. 快乐数 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 题目分析: 为了房便叙述&#xff0c;将「对于⼀个正整数&#xff0c;每⼀次将该数替换为它每个位置上的数字的平方和」这⼀个 操作记为 x 操作&#xff1b; 题目告诉我们&#…

Shell脚本之基础-2

目录 一、字符处理 cut命令 awk命令 sed命令 字符串排序 二、条件判断 文件类型判断 文件权限判断 两个文件的判断 整数比较 字符串判断 多重判断 三、流程控制 if分支 if else 双分支结构 case分支 for循环 while循环 一、字符处理 cut命令 命令格式&#x…

Python 金融数据分析工具库之zvt使用详解

​​​​​​​ 概要 Python在金融数据分析领域有着广泛的应用,而zvt库作为一款强大的金融数据分析工具,为开发者提供了丰富的功能和灵活的应用接口。本文将深入介绍zvt库的安装、特性、基本功能、高级功能、实际应用场景,并总结其在金融数据分析中的价值和优势。 安装 …

mysql故障排查

MySQL是目前企业最常见的数据库之一日常维护管理的过程中&#xff0c;会遇到很多故障汇总了常见的故障&#xff0c;MySQL默认配置无法满足高性能要求 一 MySQL逻辑架构图 客户端和连接服务核心服务功能存储擎层数据存储层 二 MySQL单实例常见故障 故障1 ERROR 2002 (HY000)…

(echarts)title和legend不重叠/legend图例滚动显示不换行

(echarts)title和legend不重叠/legend图例滚动显示不换行 title和legend都被放置在了不同的位置&#xff0c;从而避免了重叠。你可以根据实际的图表布局和需求调整left&#xff08;水平位置&#xff09;和top&#xff08;垂直位置&#xff09;等属性&#xff0c;确保它们不会相…

【SCI绘图】【箱型图系列1 python】多类对比及各类下属子类对比

SCI&#xff0c;CCF&#xff0c;EI以及核心期刊绘图宝典&#xff0c;爆款更新&#xff0c;助力科研&#xff01; 本期分享&#xff1a; 【SCI绘图】【箱型图系列1】多类对比各类下属子类对比 文末附带完整代码&#xff1a; 1.环境准备 python 3 from matplotlib import pyp…

QT-QPainter

QT-QPainter 1.QPainter画图  1.1 概述  1.1 QPainter设置  1.2 QPainter画线  1.3 QPainter画矩形  1.4 QPainter画圆  1.5 QPainter画圆弧  1.6 QPainter画扇形 2.QGradient  2.1 QLinearGradient线性渐变  2.2 QRadialGradient径向渐变  2.3 QConicalGr…

【Unity每日一记】如何从0到1将特效图集制作成一个特效

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

Prometheus+grafana环境搭建Nginx(docker+二进制两种方式安装)(六)

由于所有组件写一篇幅过长&#xff0c;所以每个组件分一篇方便查看&#xff0c;前五篇链接如下 Prometheusgrafana环境搭建方法及流程两种方式(docker和源码包)(一)-CSDN博客 Prometheusgrafana环境搭建rabbitmq(docker二进制两种方式安装)(二)-CSDN博客 Prometheusgrafana环…

数据分析python代码——数据填充

在Python中&#xff0c;我们通常使用pandas库来处理和分析数据。数据填充是数据预处理的一个重要步骤&#xff0c;用于处理数据中的缺失值。以下是使用pandas库进行数据填充的示例代码&#xff1a; 在数据分析中&#xff0c;处理缺失值&#xff08;空值&#xff09;是一个重要…
最新文章