STM32基础回顾

文章目录

  • 单片机编程的原理
  • GPIO
  • 中断
    • EXTI外部中断
    • 定时器中断、串口中断
  • 定时器
    • 定时器中断配置过程
    • 通用定时器输出比较功能:PWM波的生成
    • 定时器的输入捕获功能
      • 主从触发模式
      • PWMI模式
    • 定时器的编码器接口
  • DMA简介
  • 通信接口
  • USART
    • 软件配置流程:
      • 1、仅发数据的配置
      • 2、收发数据的配置
  • I2C
    • I2C时序基本单元
    • 具体应用
      • 指定地址写(主机发送)
      • 指定地址读
      • 总结
    • MPU6050通信流程
  • SPI
    • 起始终止时序
    • 交换一个字节
  • 通信协议比较
    • USART
    • I2C
    • SPI


单片机编程的原理

在这里插入图片描述

编程的目的是,通过配置stm32的外设,来实现相应的功能。
注意在操作外设之前必须使能时钟。
在这里插入图片描述

GPIO

在STM32中,所有的GPIO都是挂载在APB2外设总线上的。
在这里插入图片描述
其中

  • 寄存器是一个特殊的存储器,内核可以通过APB2总线对寄存器进行读写。
  • 驱动器负责增大驱动能力。

GPIO电路图
在这里插入图片描述
可配置为8种输入输出模式。
在这里插入图片描述
在输出模式下,输入模式也是有效的;
在输入模式下,输出模式无效。

中断

NVIC是一个内核外设,用来分配优先级和管理中断
在这里插入图片描述
抢占优先级高的可以中断嵌套,响应优先级高的可以优先排队;
抢占优先级和响应优先级均相同的按中断号排队。

EXTI外部中断

大致来说,就是监控电平跳变的信号触发GPIO口的中断。
具体来说
1、EXTI可以监测指定GPIO口的电平信号,当其指定的GPIO口产生电平变化时,EXTI将立即向NVIC发出中断申请,经过NVIC裁决后即可中断CPU主程序,使CPU执行EXTI对应的中断程序
2、支持的触发方式:上升沿/下降沿/双边沿/软件触发
3、支持的GPIO口:所有GPIO口,但相同的Pin不能同时触发中断
4、通道数:16个GPIO_Pin,外加PVD输出、RTC闹钟、USB唤醒、以太网唤醒
5、触发响应方式:中断响应/事件响应
在这里插入图片描述

打开RCC时钟(GPIO和AFIO);
配置GPIO为输入模式;
配置AFIO(接线);
配置EXTI,设置线路,选择边沿触发方式,选择触发响应方式(中断响应);
配置NVIC(内核的外设无需时钟),设置优先级分组,初始化NVIC。

void CountSensor_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);  
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);
	
	GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource14);
	
	EXTI_InitTypeDef EXTI_InitStructure;
	EXTI_InitStructure.EXTI_Line = EXTI_Line14;
	EXTI_InitStructure.EXTI_LineCmd = ENABLE;
	EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
	EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
	EXTI_Init(&EXTI_InitStructure);
	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);   // 优先级分组
	
	NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel = EXTI15_10_IRQn;  
	// 指定中断通道开启或关闭
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	NVIC_Init(&NVIC_InitStructure);
}

uint16_t CountSensor_Get(void)
{
	return CountSensor_Count;
}

// 指定中断通道的中断函数
void EXTI15_10_IRQHandler(void)
{
	if (EXTI_GetITStatus(EXTI_Line14) == SET)
	{
		/*如果出现数据乱跳的现象,可再次判断引脚电平,以避免抖动*/
		if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_14) == 0)
		{
			CountSensor_Count ++;
		}
		EXTI_ClearITPendingBit(EXTI_Line14);  // 清除中断标志位
	}
}

定时器中断、串口中断

下面介绍

定时器

定时器可以对输入的时钟进行计数,在计数值达到设定值时触发中断。
基本定时器 = 16为计数器 + 预分频器 + 自动重装寄存器(时基单元)
在这里插入图片描述
通用定时器
在这里插入图片描述
无论是什么定时器,内部的基准时钟都是72MHz

定时器中断配置过程

打开RCC时钟;
配置时基单元; // 如果只需要定时器配置到这里就结束
配置输出中断控制,允许更新中断输出到NVIC;
配置NVIC,在NVIC种打开定时器中断的通道,并分配优先级;
最后使能时基单元中的定时器。

决定定时时间的参数为结构体TIM_Period和结构体TIM_Prescaler
计数器溢出频率(定时频率)= 72M/(PSC+1)/(ARR+1)
如果需要1hz,则代码如下

在这里插入图片描述

上述代码红色框部分为 分频系数ARR=10000-1; PSC=7200-1,在72M/7200 = 10k的频率下,计10000个数,就是1s。

定时器中断也可以产生pwm波:设置定时器中断,在中断里手动计数,手动翻转电平。
定时器中断也可以完成输入捕获:来个外部中断,在中断里手动把CNT取出来,放在变量里面。
定时器中断也可以完成编码器接口的硬件功能:在中断中,手动自增或自减计数。
以上都是消耗软件资源

通用定时器输出比较功能:PWM波的生成

输出比较可以通过比较CNT和CCR(捕获比较寄存器)值的关系,来对输出电平进行置1、置0或翻转的操作,从而输出。
使用硬件资源(CCR)来输出PWM波不需要中断,只需要比较计数器和寄存器的值就行了
在这里插入图片描述

同一个定时器可以通过不同的通道来输出PWM,具体哪个通道通过函数配置来实现。
在这里插入图片描述

通过ARR、PSC、CCR的设置来调整PWM的参数。
在这里插入图片描述

所以ARR=100-1; PSC = 720-1; CCR = 50// 50%的占空比

void PWM_Init(void)
{
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
//	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
//	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);
//	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;		//GPIO_Pin_15;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	TIM_InternalClockConfig(TIM2);
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		    //ARR
	TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;		//PSC
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
	
	TIM_OCInitTypeDef TIM_OCInitStructure;
	TIM_OCStructInit(&TIM_OCInitStructure);
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
	TIM_OCInitStructure.TIM_Pulse = 0;		//CCR
	TIM_OC1Init(TIM2, &TIM_OCInitStructure);
	
	TIM_Cmd(TIM2, ENABLE);
}

一般只调节PSC,不会影响CCR和ARR的占空比。一般先根据分辨率确定ARR,再根据pwm频率条件PSC分频。
示波器输出
在这里插入图片描述

项目使用TB6612:双路H桥型的直流电机驱动芯片,可以驱动两个直流电机。双路H桥型电路由两个推挽电路组成。H桥可以变换电流的方向。
在这里插入图片描述

定时器的输入捕获功能

测输入PWM波的频率和占空比
输入捕获(4个通道)和输出比较(4个通道)只能使用其中一个。
输入捕获,当通道输入引脚出现上升沿或下降沿时,将当前CNT的值锁存到CCR中,可测量PWM波的频率、占空比等等参数。
在这里插入图片描述

主从触发模式

可配合主从触发模式,实现硬件全自动测量。不用再使用中断去清空CNT
在这里插入图片描述
注意CNT计数可能会溢出(0-65535)

PWMI模式

可配置为PWMI模式,同时测量hz和占空比;
在这里插入图片描述

频率测量的方法:
测频法:在一个闸门时间T内,记录上升沿出现的次数N,然后计算
测周法:在两个上升沿内,用单片机的标注频率fc计次,记录次数N(到CCR),然后计算。(一般使用这个,随时都能取CCR的值)
在这里插入图片描述

定时器的编码器接口

电机驱动项目:使用pwm驱动电机,再使用编码器测量电机的速度,然后再用PID进行控制。
通用定时器拥有一个编码器接口。
在这里插入图片描述
正交编码器能够抗噪声,通过双相查表来对抗噪声。

所以,问:TIMER你一般用来做什么?

DMA简介

直接存储器读取,协助CPU完成数据转运的工作,提供外设<=>存储器、存储器<=>存储器的高速数据传输
在这里插入图片描述

一般情况下,程序都是在flash程序存储器下运行
DMA外设可以直接访问32内部的寄存器,包括运行内存SRAM,程序存储器flash,寄存器等等
寄存器是一种特殊的存储器:一、cpu可以对寄存器进行读写,类型读取运行内存;二、寄存器都连接了一根导线,可以控制电路状态,如高低电平的切换,导通和断开开关。所以寄存器是连接软件和硬件的桥梁软件读取寄存器就相当于在控制硬件的执行
寄存器与存储器不同的是,寄存器的每一位都对应着外设电路的状态

通信接口

需要制定通信协议,通信双方按照协议规则进行数据收发。
在这里插入图片描述

USART

USART外设:按照串口协议来产生和接收高低电平信号。点对点通信。

串口参数:
波特率:串口通信的速率。因为串口是异步通信,如果速率不同,会导致读取数据的错位。
起始位:标志一个数据帧的开始,固定为低电平(串口空闲时为高电平)
数据位:数据帧的载荷。如发送0x0F,低位先发,于是电平为11110000的波形。注意,串口一次只能发送一个 8 位(1 个字节)的数据
停止位:数据帧的间隔,固定为高电平。
在这里插入图片描述
在这里插入图片描述

翻转电平是由usart外设完成的,无需编程。软件只需要读写DR寄存器。
在这里插入图片描述

重点在发送数据寄存器TDR和接收数据寄存器RDR。
在这里插入图片描述

在数据转运到接收数据寄存器RDR时,会置一个RXNE标志位,RXNE就可以去申请中断,从而在收到数据时便快速的进行数据的处理。
上图看似有四个寄存器,但是软件层面只有一个DR寄存器供我们读写。

软件配置流程:

1、仅发数据的配置

  • 开启USART的时钟,开启GPIOA的时钟;
  • 初始化GPIO引脚:TX引脚位复用推挽输出,RX位输入脚,选择上拉输入模式
  • 初始化串口配置:

在这里插入图片描述

  • USART_Cmd开启串口
  • 之后就可以使用函数接口发送数据:
USART_SendData(USART1, uint8_t)  // uint8_t就是char,8位

封装之后

void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}

调用这个库函数,Byte变量就写入TDR中了,再等待一下TDR的数据转移到移位寄存器中才能放心,不然数据就覆盖了。所以还需要检查标识位TXE(TDR是否为空):
while(USART_GETFlagStatus(USART1, USART_FLAG_TXE) == RESET);
注:读数据寄存器非空的标志为RXNE,下面会用到。

2、收发数据的配置

USART_InitStruture.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
一般使用中断触发处理数据,所以下一步:
配置NVIC:
开启RXNE标志位到NVIC的输出,RXNE一旦置1,就会向NVIC申请中断;
在这里插入图片描述

编写中断处理函数

void USART1_IRQHandler(void)
{
	if(USART_GETITStatus(USART1, USART_IT_RXNE) == SET)
	{
		// 有数据来了,接收
		uint8_t Serial_RXData = USART_ReceiveData(USART1);
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);  // 清除标识位
	}
}

以上是单字节的数据收发,数据包的收发类似。

I2C

目的:读取外挂寄存器数据(CPU要读取MPU6050的寄存器),而串口的工作是传输数据。

##I2C的功能:
发送数据后,另一端能够应答;
同步时序,半双工(串口是异步时序,有USART硬件的支持),对硬件要求不是很严格;
支持总线挂载多设备,一般为一主多从。
在这里插入图片描述
所有I2C设备的SCL连在一起,SDA连在一起
设备的SCL和SDA均要配置成开漏输出模式,且SCL和SDA各添加一个上拉电阻,阻值一般为4.7KΩ左右(弱上拉电阻+开漏输出模式
MPU6050已经在硬件上接入上拉电阻了。
在这里插入图片描述
复习:
开漏输出:只能输出低电平(只能下拉)

I2C时序基本单元

起始条件:SCL高电平期间,SDA从高电平切换到低电平
终止条件:SCL高电平期间,SDA从低电平切换到高电平
注意:只用主机才能产生起始和终止。只有主机才能控制SCL
在这里插入图片描述
一个字节主机发送=>从机接收:
主机拉下SCL,主机把数据放在SDA(高位先行);主机松开SCL,从机读取SDA的数据(SCL高电平期间,SDA不允许变换,因为从机正在读)。如此循环八次,就发送了一个字节的数据。
低电平主机放数据,高电平从机读数据。
一个字节主机接收<=从机发送:
SCL低电平期间,从机把数据放在SDA上,然后释放SCL;主机在SCL高电平期间读取SDA数据(SCL高电平期间,SDA不允许变换)。如此循环八次,就发送了一个字节的数据。
低电平从机放数据,高电平主机读数据。
总结:所有设备包括主机都处于输入模式,当主机需要发送时,主动去拉下SDA。而在主机被动接收的时,必须先释放SDA(释放总线,不然永远是低电平,别人没法写,总线是“或”逻辑)。

应答机制
从机应答:操作的是SDA这根线,当主机松手SDA时,从机需要拉住SDA,告诉主机自己收到了。
主机应答:

具体应用

指定地址写(主机发送)

对于指定从机设备地址(MPU6050地址:0xD0),在指定从机设备的指定寄存器地址下(0x19)写入指定数据(0xAA)
从机设备地址站前7位,第8位为主机想写就是0,想读就是1。
在这里插入图片描述

指定地址读

对于指定从机设备地址(MPU6050地址:0xD0),指定从机设备的指定寄存器地址(0x19);对于指定从机设备地址(MPU6050地址:0xD0,但是第8位为1,表述主机想读),之后直接收数据。
在这里插入图片描述
实现了指定地址读和写,就可以实现STM32读取外挂芯片寄存器的操作。

总结

只有主机SCL下拉期间,SDA的数据才能动(要么主机放数据、要么从机放)。主机松手SCL(高电平),一律不准动SDA(因为要读,要么主机要么从机)。

MPU6050通信流程

初始化I2C;
指定MPU6050地址,指定要写的寄存器地址;
初始化MPU6050的寄存器,其实就是主机往指定的寄存器中写数据(电源管理寄存器解除睡眠、选择陀螺仪时钟、6个轴不待机。。。);
再发一次MPU6050地址指定读,然后读取指定寄存器的数据1632(Acc,Gypo);

SPI

SPI与I2C的目的相同,为了读取外部寄存器。
SCK、MOSI(主机输出,从机输入)、MISO(主机输入,从机输出)、SS(从机选择线)
同步时序、全双工(数据发送和接收各占一条线)
在这里插入图片描述
SCK时钟线由主机掌握
主机另外引出多条SS控制线,拉低为呼叫。
输出引脚配置为推挽输出,输入引脚为浮空或上拉输入
推挽输出:高低电平均有很强的驱动能力(下降沿上升沿非常迅速)
在这里插入图片描述
SPI的数据收发,都是基于字节交换单元来实现的

起始终止时序

起始条件: SS从高电平切换到低电平
终止条件: SS从低电平切换到高电平
SS低电平为数据传输的过程

交换一个字节

模式1:SCK第一个边沿移出数据到线,第二个边沿移入数据到寄存器。
在这里插入图片描述
一般用的是模式0,在SCK第一个边沿之前就要移出数据第一个边沿移入数据。
模式2:

通信协议比较

在这里插入图片描述

USART

定义好波特率等等参数之后,调用接口发送数据

发送:

USART_SendData(USART1, uint8_t)  // uint8_t就是char,8位

封装之后

void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}

接收:
中断处理函数

void USART1_IRQHandler(void)
{
	if(USART_GETITStatus(USART1, USART_IT_RXNE) == SET)
	{
		// 有数据来了,接收
		uint8_t Serial_RXData = USART_ReceiveData(USART1);
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);  // 清除标识位
	}
}

I2C

优点:一根通信线兼顾收发(无论挂载多少设备)、寻址机制,应答机制。
缺点:因为I2C要实现半双工(要经常切换输入输出),所以采用开漏+上拉电阻的设计,这种设计使得通信线高电平驱动能力较弱(导致SDA从低到高,上升沿的耗时较长,限制传输速度)。

SPI

优点:传输更快(推挽输出),无需寻址(SS线负责)。
缺点:硬件要求高,资源浪费(全双工)。
四根通信线:SCK,MOSI、MISO、SS。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/53984.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

校园跑腿小程序功能分享

提起校园跑腿小程序大家都不陌生&#xff0c;尤其是对上大学的伙伴们来说,更是熟悉得不能再熟悉了&#xff0c;和我们的生活息息相关&#xff0c;密不可分。 对于现在的年轻人来说&#xff0c;网购是非常简单和方便的一种购物方式&#xff0c;随之快递也会越来越多。在我们国家…

java版本spring cloud 企业工程系统管理 工程项目管理系统源码

&#xfeff; Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&…

self-attention笔记

self-attention 对于self-attention的理解 对于self-attention&#xff0c;我们直觉可能会觉得是从一个大的数据中&#xff0c;将我们的注意力集中在我们感兴趣的区域里&#xff0c; 但通过self-attention的原理可以发现&#xff0c;其原理更像是对于一个区域&#xff08;一个…

八大排序算法--希尔排序(动图理解)

目录 希尔排序 概念 算法思路 动画演示 代码如下 复杂度分析 时间复杂度测试 运行结果 完整代码 创作不易&#xff0c;如果本篇博客对您有一定的帮助&#xff0c;大家记得留言点赞哦。 希尔排序 概念 希尔排序是插入排序的一种&#xff0c;是对直接插入排序的优化。其…

uniapp小程序,根据小程序的环境版本,控制的显页面功能按钮的示隐藏

需求&#xff1a;根据小程序环境控制控制页面某个功能按钮的显示隐藏&#xff1b; 下面是官方文档和功能实现的相关代码&#xff1a; 实现上面需要&#xff0c;用到了uni.getAccountInfoSync()&#xff1a; uni.getAccountInfoSync() 是一个 Uniapp 提供的同步方法&#xff0c…

Acwing.875 快速幂

题目 给定n组ai , bi, pi&#xff0c;对于每组数据&#xff0c;求出akimod pi的值。 输入格式 第一行包含整数n。 接下来n行&#xff0c;每行包含三个整数ai , bi,pi。输出格式 对于每组数据&#xff0c;输出一个结果&#xff0c;表示aibimod pi的值。 每个结果占一行。 数…

Linux - 环境变量

1.基本概念 环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数 如&#xff1a;我们在编写C/C代码的时候&#xff0c;在链接的时候&#xff0c;从来不知道我们的所链接的动态静态库在哪里&#xff0c;但 是照样可以链接成功&#xff0c;生…

「如何优雅有效利用周末和下班时间?」

文章目录 每日一句正能量前言下班的时间规划周末的时间规划提升周末体验感的好方法怎样才能获得充分的休息后记 每日一句正能量 眼望古城街尽&#xff0c;心谱落愁无序&#xff0c;旧时的誓言&#xff0c;曾而相似&#xff0c;河水在遵循河道的指引下&#xff0c;在曲折前进中放…

zookeeper学习(三)基础数据结构

数据模型 在 zookeeper 中&#xff0c;可以说 zookeeper 中的所有存储的数据是由 znode 组成的&#xff0c;节点也称为 znode&#xff0c;并以 key/value 形式存储数据。 整体结构类似于 linux 文件系统的模式以树形结构存储。其中根路径以 / 开头。 进入 zookeeper 安装的 …

心法利器[93] | 谈校招:技术面

心法利器 本栏目主要和大家一起讨论近期自己学习的心得和体会&#xff0c;与大家一起成长。具体介绍&#xff1a;仓颉专项&#xff1a;飞机大炮我都会&#xff0c;利器心法我还有。 2022年新一版的文章合集已经发布&#xff0c;累计已经60w字了&#xff0c;获取方式看这里&…

大数据面试题:HBase的RegionServer宕机以后怎么恢复的?

面试题来源&#xff1a; 《大数据面试题 V4.0》 大数据面试题V3.0&#xff0c;523道题&#xff0c;679页&#xff0c;46w字 可回答&#xff1a;1&#xff09;HBase一个节点宕机了怎么办&#xff1b;2&#xff09;HBase故障恢复 参考答案&#xff1a; 1、HBase常见故障 导…

抖音短视频seo矩阵系统源码开发部署技术分享

抖音短视频的SEO矩阵系统是一个非常重要的部分&#xff0c;它可以帮助视频更好地被搜索引擎识别和推荐。以下是一些关于开发和部署抖音短视频SEO矩阵系统的技术分享&#xff1a; 一、 抖音短视频SEO矩阵系统的技术分享&#xff1a; 关键词研究&#xff1a;在开发抖音短视频SEO矩…

助力保险行业数字化创新,麒麟信安参展2023中国财险科技应用高峰论坛

2023年7月27日&#xff0c;由中科软科技股份有限公司主办的“中国财险科技应用高峰论坛”在北京古北水镇成功举办。作为享誉中国保险科技界的盛会&#xff0c;本次活动以“数智保险 创新未来”主题&#xff0c;汇聚全国数百位保险公司主管领导、资深保险行业信息化专家&#xf…

【探讨】Java POI 处理 Excel 中的名称管理器

前言 最近遇到了一些导表的问题。原本的导表工具导不了使用名称管理器的Excel。 首先我们有两个Sheet。B1用的是名称管理器中的AAA, 而B2用的对应的公式。 第二个sheet&#xff0c;名为Test2: 这是一段简化的代码&#xff1a; public class Main {public static void mai…

Stable Diffusion - 真人照片的高清修复 (StableSR + GFPGAN) 最佳实践

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132032216 GFPGAN (Generative Facial Prior GAN) 算法&#xff0c;用于实现真实世界的盲脸恢复的算法&#xff0c;利用预训练的面部 GAN&#xf…

61 # http 数据处理

node 中的核心模块 http 可以快速的创建一个 web 服务 const http require("http"); const url require("url");// req > request 客户端的所有信息 // res > respone 可以给客户端写入数据 const server http.createServer();server.on("r…

Linux虚拟机中安装MySQL5.6.34

目录 第一章、xshell工具和xftp的使用1.1&#xff09;xshell下载与安装1.2&#xff09;xshell连接1.3&#xff09;xftp下载安装和连接 第二章、安装MySQL5.6.34&#xff08;不同版本安装方式不同)2.1&#xff09;关闭防火墙&#xff0c;传输MySQL压缩包到Linux虚拟机2.2&#x…

【Docker 学习笔记】Docker架构及三要素

文章目录 一、Docker 简介二、Docker 架构1. Docker 客户端和服务器2. Docker 架构图3. Docker 运行流程图 三、Docker 三要素1. 镜像&#xff08;Image&#xff09;2. 容器&#xff08;Container&#xff09;3. 仓库&#xff08;Repository&#xff09; 一、Docker 简介 Dock…

解决el-table打印时数据重复显示

1.表格数据比较多加了横向滚动和竖向滚动&#xff0c;导致打印出问题 主要原因是fixed导致&#xff0c;但是又必须得滚动和打印 方法如下&#xff1a; 1. 2. is_fixed: true,//data中定义初始值 3.打印时设置为false,记得要改回true if (key 2) { this.is_fixed false //打…

vue 修改端口号

在根目录创建一个vue.config.js文件夹 module.exports {lintOnSave: false,devServer: {port: 3000,open: true} }运行后
最新文章