注塑机自动喷雾程序 报警自动关机

/***参数设置,开模数计数,秒脉冲计时***************/
/***实现功能:检测报警信号,脱模剂开模数计数信号***/
/***参数:1:脱模剂开模数 2:喷雾时间 3:延时时间 ***/
/***串口接收触摸屏参数设置字符串,接收并保存******/
/***端子输入口读开模数,比较设定值后输出到电磁阀**/
/***端子输入口读报警信号,到设定值关闭电机及加热**/
              #include     <REG52.H>      //2023  2 28  L422 CODE2785
              #include     <intrins.H>
              #include     "stdio.h"
              #define      uint unsigned int  
              #define      uchar unsigned char
              #define      WT_12M   0x83         //IAP_CONTR
//#define WT_30M          0x80     频率30M
//#define WT_24M          0x81     频率24M
//#define WT_20M          0x82     频率20M
//#define WT_12M          0x83     频率12M
//#define WT_6M           0x84     频率6M
//#define WT_3M           0x85     频率3M
//#define WT_2M           0x86     频率2M
//#define WT_1M           0x87     频率1M
              #define      IAP_ADDRESS 0x0400    //EEPROM首地址
              typedef      unsigned char BYTE;
              typedef      unsigned int WORD;
              uchar        s;                        
              sbit         AUX=P3^2;             /****RoLa***/
              sbit         MD0MD1=P1^7;             /****RoLa***/
              sbit         OUT1=P3^4;            /****输出***/
              sbit         OUT2=P3^5;            /****输出***/
              sbit         WARNING=P5^5;         /****输入***/
              sbit         INTPUT1=P5^4;         /****输入***/
              sbit         BP=P1^0;              /***输出LED指示***/
              uchar        v;                    /*从机号*/
              uchar        Modulus;              //开模数
              uchar        Spray_Time;             //喷雾时间
              uchar        Delay_Time;             //延时时间
              uchar        kcounter,kstatus;     //按键计数标志 按键状态标志
              bit           Receive_Flag;         //串口数据缓冲接收标志
              bit           WARNING_Flag;         //低电平报警标志
              bit           S_Flag;                 //秒计时标志
              uint         WARNING_Time;         //报警计时计数器
              uchar        DAT2=0;
              static       uint                  val1,val2,val3,val4;
              uint         val5;                 //机器编号
              uint         SS=0;
              uint         TIME=0;               //实际开模数
              uint         a[10];                //定义数组a 存储串口数据串
/*---------------延时子程序----------------*/
              void delay1 (uint ms)
              {
              uint i,j;
              for(i=0;i<ms;i++)
              for(j=0;j<200;j++)
              ;
              }    
/*------------------延时子程序------------------------*/
              void delay10ms(uint x)
              {
               uint i, j;
               for (i=0;i<x;i++)
               for (j=0;j<500;j++);
              }
/*-----------延时100ms子程序12MHz --------*/
               void Delay_100ms(uint x)          //
               {
               uint i,j;
                for(i=0;i<x;i++)
                {
                for(j=0;j<18000;j++);
                }
               }
/****************按键计数器状态寄存器归零*************/
              void RstKey()
              {
              kcounter=0;                       //按键计数器归零
              kstatus=0;                        //状态寄存器归零
              }
/*****************按键低电平检测函数*****************/
              void   LowVoltKey(void)           //按键计数器状态标志加一
              {
              kcounter++;                       
              kstatus++;     
              _nop_();                         //延时                  
              }
/*****************按键高电平检测函数*****************/
              void    HighVoltKey(void)         //按键计数器加一 状态标志归零
              {
              kcounter++;                       //按键计数器加一
              kstatus=0;                        //按键状态标志归零
              _nop_();                          //延时
              }
/*----关闭IAP----------------------------*/
              void IapIdle()
              {
              IAP_CONTR=0;                       //关闭IAP功能     ISP/IAP 控制寄存器
              IAP_CMD=0;                         //清除命令寄存器
              IAP_TRIG=0;                        //清除触发寄存器
              IAP_ADDRH=0X80;                    //将地址设置到非IAP区域
              IAP_ADDRL=0;
              }
/*-从ISP/IAP/EEPROM区域读取一字节-*/
              char IapRead(int addr)
              {
              char dat;
              IAP_CONTR = WT_12M;                         //使能IAP    ISP/IAP 控制寄存器
              IAP_CMD = 1;                                //设置IAP读命令
              IAP_ADDRL = addr;                           //设置IAP低地址
              IAP_ADDRH = addr >> 8;                      //设置IAP高地址
              IAP_TRIG = 0x5a;                            //写触发命令(0x5a)
              IAP_TRIG = 0xa5;                            //写触发命令(0xa5)
              _nop_();
              dat = IAP_DATA;                             //读IAP数据
              IapIdle();                                  //关闭IAP功?
              return dat;
              }
/*********字节写*********************/
              void IapProgram(int addr, char dat)
              {
              IAP_CONTR = WT_12M;                         //使能IAP
              IAP_CMD = 2;                                //设置IAP写命令
              IAP_ADDRL = addr;                           //设置IAP低地址
              IAP_ADDRH = addr >> 8;                      //设置IAP高地址
              IAP_DATA = dat;                             //写IAP数据
              IAP_TRIG = 0x5a;                            //写触发命令(0x5a)
              IAP_TRIG = 0xa5;                            //写触发命令(0xa5)
              _nop_();
              IapIdle();                                  //关闭IAP功能
              }
/*---扇区擦除---------------*/
              void IapErase(int addr)
              {
              IAP_CONTR = WT_12M;                         //使能IAP
              IAP_CMD = 3;                                //设置IAP擦除命令
              IAP_ADDRL = addr;                           //设置IAP低地址
              IAP_ADDRH = addr >> 8;                      //设置IAP高地址
              IAP_TRIG = 0x5a;                            //写触发命令(0x5a)
              IAP_TRIG = 0xa5;                            //写触发命令(0xa5)
              _nop_();                                    //
              IapIdle();                                  //关闭IAP功能
              }
/*************写参数到EEPROM*******************************/
              void Write_EepromTime()
              {
              IapErase(IAP_ADDRESS); //扇区擦除
              IapProgram(IAP_ADDRESS+0,val1/256);       /*开模数高八位*/    
              IapProgram(IAP_ADDRESS+1,val1%256);       /*开模数低八位*/

              IapProgram(IAP_ADDRESS+2,val2/256);       /*喷雾时间高八位*/  
              IapProgram(IAP_ADDRESS+3,val2%256);       /*喷雾时间低八位*/

              IapProgram(IAP_ADDRESS+4,val3/256);       /*喷雾延时高八位*/  
              IapProgram(IAP_ADDRESS+5,val3%256);       /*喷雾延时低八位*/

              IapProgram(IAP_ADDRESS+6,val4/256);       /*报警延时关高八位*/    
              IapProgram(IAP_ADDRESS+7,val4%256);       /*报警延时关低八位*/

              IapProgram(IAP_ADDRESS+8,val5/256);       /*系统高八位*/  
              IapProgram(IAP_ADDRESS+9,val5);           /*系统低八位*/
              }
/***********************************/
              void red_eeprom(void)
              {
              uint m,n;        
              m=IapRead(IAP_ADDRESS+0);  //开模数高八位
              n=IapRead(IAP_ADDRESS+1);  //开模数低八位
              val1=m*256+n;                     //开模数
               m=IapRead(IAP_ADDRESS+2);  //喷雾时间高八位
              n=IapRead(IAP_ADDRESS+3);  //喷雾时间低八位
              val2=m*256+n;                     //喷雾时间
              m=IapRead(IAP_ADDRESS+4);  //喷雾延时时间高八位
              n=IapRead(IAP_ADDRESS+5);  //喷雾延时时间低八位
              val3=m*256+n;                     //喷雾延时时间
              m=IapRead(IAP_ADDRESS+6);  //报警延时关加热电机高八位
              n=IapRead(IAP_ADDRESS+7);  //报警延时关加热电机低八位
              val4=m*256+n;                     //报警延时关加热电机时间
              val5=IapRead(IAP_ADDRESS+8);  //备用高八位
              }
/*------------初始化串口---------------------*/
              void InitUart()
              {
              SCON=0X50;                         //8位数据,可变波特率
              AUXR|=0x01;                        //串口1选择定时器2为波特率发生器
              AUXR|=0X04;                        //定时器2时钟为Fosc,即1T
              T2L=0XE0;                          //设置定时器处置  110592》9600
              T2H=0XFE;                          //设置定时器处置  110592》9600
              AUXR|=0X10;                        //启动定时器2
              TI=1;
              ES=1;                        //
              EA=1;
              }
/**************串口发送*****************************/
              void Send(uchar temp)
              {
              unsigned serial;
              serial=temp;
              SBUF=(uchar)temp;
              while(TI!=1);
              TI=0;
              }
/*--------UART中断服务程序---串口4接收触摸屏数据---*/
              void Uart() interrupt 4 using 1
              {
               uchar i;
               if(RI)
               {
                if(SBUF==0XFA)         //触摸屏结束码
                {
                Receive_Flag=1;                     //接收数据标志置一
                RI=0;                             //
                i=0;                             //数组计数器归零
                }
                else
                {
                a[i]=SBUF;                       //数组下标位置的数据等于SBUF
                RI=0;                             //
                i++;
                }
               }
              }
/**************定时器0中断*********************/
              void TM0_Isr() interrupt 1
              {
               SS++;
               if(SS>=12000)         //6000
               {
               SS=0;
               S_Flag=1;                                   //秒计时标志
               }
              }
/*------------------主循环程序----------------*/      
              void   main( )                     /*主程序开始*/
              {                                  /**加一**/
              AUXR=0X80;                         //STC系列的1T 设置
              TL0=0x66;                          //65536-11.0592M/12/1000
              TH0=0xfc;
              ET0=1;                             //使能定时器中
              TR0=1;                             //启动定时器
              BP=1;  
              delay1(2000);
              BP=0;
              delay1(2000);
              BP=1;  
              delay1(2000);
              BP=0;
              delay1(2000);
              BP=1;  
              delay1(2000);
              BP=0;
              InitUart();                        //初始化串口
              MD0MD1=0;                             //
              P_SW1=0x00;                        //RXD/P3.0, TXD/P3.1
              delay10ms(200);
              printf("0XFF,0XFF,0XFF");
              delay10ms(200);
              Send(0XBB);
              delay10ms(200);
              Send(0XBB);
              delay10ms(200);
              Send(0XBB);
              red_eeprom();
              P_SW1=0x40;                        //RXD_2/P3.6, TXD_2/P3.7
              delay10ms(100);
              printf("0XFF,0XFF,0XFF");          //向串口屏发启动信号
              delay1(20);
              printf("t0.txt=\"系统启动\"" );    //    
              printf("XFF,XFF,XFF");             //向串口屏发启动信号
              printf("t0.txt=\"系统启动\"" );    //    
              printf("0XFF,0XFF,0XFF");          //向串口屏发启动信号
              delay10ms(50);
              printf("n0.val=%d\xff\xff\xff",val1);
              printf("n0.val=%d\xff\xff\xff",val1);    //开模计数
              printf("n1.val=%d\xff\xff\xff",val2);    //喷雾时间
              printf("n2.val=%d\xff\xff\xff",val3);    //喷雾延时
              printf("n3.val=%d\xff\xff\xff",val4); //关机延时 开模次数
              printf("n5.val=%d\xff\xff\xff",val5);    //系统
              delay1(20);
              Receive_Flag=0;                     //接收数据标志置零
              S_Flag=0;                             //秒计时标志
              WARNING_Time=0;                     //报警计时计数器
              WARNING_Flag=0;                     //低电平报警标志
              while(1)
              {
               if(Receive_Flag==1)                 //接收标志为1
               {
                Receive_Flag=0;                     //接收标志归零 重新接收
                  if (a[0]==0XC0&&a[1]==0X00)                     //
                 {
                 val1=a[3]*256+a[2];             //开模数
                 printf("n4.val=%d\xff\xff\xff",val1);    //返回数据核对
                 }
                 else if (a[0]==0XC0&&a[1]==0X01)
                 {
                 val2=a[3]*256+a[2];             //喷雾时间
                 printf("n4.val=%d\xff\xff\xff",val2);    //返回数据核对
                 }
                 else if (a[0]==0XC0&&a[1]==0X02)             //
                 {
                 val3=a[3]*256+a[2];            //喷雾延时
                 printf("n4.val=%d\xff\xff\xff",val3);    //返回数据核对
                 }
                 else  if (a[0]==0XC0&&a[1]==0X03)
                 {
                 val4=a[3]*256+a[2];             //报警延时关电机加热
                 printf("n4.val=%d\xff\xff\xff",val4);    //返回数据核对
                 }
                 else if (a[0]==0XC0&&a[1]==0X04)
                 {
                 val5=a[2];                        //备用参数
                 printf("n4.val=%d\xff\xff\xff",val5);    //返回数据核对
                 }
                 Write_EepromTime();
                 delay10ms(500);     
                 printf("n0.val=%d\xff\xff\xff",val1);    //开模计数
                 printf("n1.val=%d\xff\xff\xff",val2);    //喷雾时间
                 printf("n2.val=%d\xff\xff\xff",val3);    //喷雾延时
                 printf("n3.val=%d\xff\xff\xff",val4);    //关机延时
                 printf("n5.val=%d\xff\xff\xff",val5);    //系统
                }
//
                  RstKey();                         //开模完低电平信号
                for(;kcounter<5;)                //按键循环5次
                {
                 if(!INTPUT1)                    //按键低电平
                 {
                 LowVoltKey();                   //按键低电平 计数器加一状态标志加一
                 }
                 else if(~!INTPUT1)              //按键高电平
                 {
                 HighVoltKey();                  //按键计数器加一    状态标志归零
                 }
                }
                if(kstatus>=3)                   /*按键状态标志大于等于3为有效值*/
                {
                P_SW1=0x40;                      //RXD_2/P3.6, TXD_2/P3.7触摸屏显示开模数
                delay10ms(100);
                TIME++;
                printf("n4.val=%d\xff\xff\xff",TIME);    //实际开模数
                if(TIME>=val1)
                 {
                 OUT1=0;                         /****输出***/
                 Delay_100ms(val2);
                 OUT1=1;                         /****输出***/
                 TIME=0;
                 }
                 RstKey();
                  for(;kcounter<5;)              //按键循环5次
                  {
                   if(~!INTPUT1)                 //按键高电平
                   {
                    kcounter++;                     //高电平加1
                    BP=0;
                    delay1(20);                     //高电平闪烁指示
                    BP=1;
                    delay1(20);                     //高电平闪烁指示
                   }
                   else if(!INTPUT1)             //按键低电平
                   {
                   kcounter=0;                   //低电平开模完未复位,继续循环检测
                   }
                 }
                }
/**********************************************/
                   RstKey();                         //按键复位
                WARNING_Time=0;                     //报警计时计数器秒计时标志赋初始化值
                 for(;kcounter<8;)                //按键循环8次
                {
                 if(!WARNING)                    //按键低电平
                  {
                   LowVoltKey();                 //按键低电平 计数器加一状态标志加一
                  }
                  else if(~!WARNING)             //按键高电平
                  {
                   HighVoltKey();                //按键计数器加一    状态标志归零
                   }
                 }
                 if(kstatus>=5)                  /*按键状态标志大于等于5为有效值*/
                  {
                   RstKey();                     //按键复位
                   WARNING_Flag=1;                  //启动低电平报警标志    while(WARNING_Flag)
                   RstKey();                     //按键自动
                   do
                   {
                    if(~!WARNING)                //按键低电平
                    {
                     kcounter++;                 //高电平加1                   
                    }
                    else if(!WARNING)            //按键高电平
                    {
                    kcounter=0;                  //低电平开模完警报复位,继续循环检测
                     if(S_Flag==1)                 //定时器计时标志置位等于1
                     {
                      WARNING_Time++;
                      S_Flag=0;                     //关闭秒计时标志,等待定时器下一秒计时赋值
                      BP=~BP;                    //测试端口
                      printf("n6.val=%d\xff\xff\xff",WARNING_Time);    //
                      }
                      if(WARNING_Time>=val4*60)
                      {
                       P_SW1=0x00;               //RXD/P3.0, TXD/P3.1
                       delay10ms(200);
                       Send(val5);
                       delay10ms(200);
                       Send(val5);
                       delay10ms(200);
                       Send(val5);
                       S_Flag=0;                 //秒计时标志赋初始化值
                       WARNING_Time=0;             //报警计时计数器秒计时标志赋初始化值
                       WARNING_Flag=0;             //低电平报警标志
                       OUT2=0;                     //
                       }
                     }                             //检测到十次高电平,报警解除
                    if(kcounter>=10)             /*按键状态标志大于等于10为有效值*/
                    {                              //连续检测到10次高电平,警报解除
                    S_Flag=0;                     //秒计时标志赋初始化值
                    WARNING_Time=0;                 //报警计时计数器秒计时标志赋初始化值
                    WARNING_Flag=0;                 //低电平报警标志
                    }
                   }
                   while(WARNING_Flag);
                   P_SW1=0x40;                  //RXD_2/P3.6, TXD_2/P3.7    P_SW1=0x40;
                  }
                 }
              }                                     //2023  2 28  L422 CODE2785

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/553585.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Emmet表达式

目录 Emmet语法简介 Emmet作用 Emmet在HTML中的使用 Emmet在CSS中的使用 Emmet语法简介 Emmet语法的前身是Zen coding,它使用缩写,来提高HTML的编写速度&#xff0c;VScode内部已经集成该语法。 Emmet作用 快速生成HTML结构语法快速生成CSS样式语法 Emmet在HTML中的使用…

python连接数据库失败怎么解决

Python 连接数据库失败怎么解决&#xff1f; 什么是 PyMySQL&#xff1f; PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库&#xff0c;Python2中则使用mysqldb。 PyMySQL 遵循 Python 数据库 API v2.0 规范&#xff0c;并包含了 pure-Python MySQL 客户端库。…

Vue_管道符“|”(单竖线)的用处

目录 1、管道符是什么 2、应用场景 背景&#xff1a;项目中偶遇在 {{ }} 插值表达式里用了 “&#xff5c;”此写法&#xff0c;一开始误以为是写错了&#xff0c;应该是写成 “&#xff5c;&#xff5c;” 双竖线&#xff08; 逻辑或运算符 &#xff09;&#xff0c;结果询问…

为什么用云渲染农场?3D云渲染农场助力影视动画行业发展

​计算机图形技术的进步使得3D渲染成为多个产业发展的重要推动力。设计师和艺术家利用这项技术将创意实现&#xff0c;创造出震撼的视觉作品。但是&#xff0c;高质量的渲染需要大量的计算资源。云渲染农场通过提供这些资源&#xff0c;有效提高了渲染的速度和效率&#xff0c;…

DRF 序列化类serializer单表

【五】序列化类serializer单表 【1】主要功能 快速序列化 将数据库模型类对象转换成响应数据&#xff0c;以便前端进行展示或使用。这些响应数据通常是以Json&#xff08;或者xml、yaml&#xff09;的格式进行传输的。 反序列化之前数据校验 序列化器还可以对接收到的数据进行…

学习 Rust 的第六天:所有权问题

大家好&#xff0c; 欢迎来到学习 Rust 的第 6 天&#xff0c;过去 5 天我们学到的内容在几乎每种语言中都是一样的。所有权是 Rust 的一个独特概念。 介绍 所有权是一种独特的内存管理系统&#xff0c;其中每个值都有一个指定的所有者&#xff0c;在所有者超出范围时自动释…

java实现wav的重采样

原因是之前写的TTS文件&#xff0c;需要指定采样率和单声道 但是TTS是用的Jacob调用COMsapi实现的 javaWNI10JACOB方式 SAPI底层支持的是C&#xff0c;C#【官方文档】 SpAudioFormat SetWaveFormatEx method (SAPI 5.4) | Microsoft Learn 用C实现的方式【可指定输出的WAV…

算法练习第19天|222.完全二叉树的节点个数

222.完全二叉树的节点个数 222. 完全二叉树的节点个数 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/count-complete-tree-nodes/description/ 题目描述&#xff1a; 给你一棵 完全二叉树 的根节点 root &#xff0c;求出该树的节点个数。题目数据保…

【Python】穿越Python的迭代之旅:while,for 循环的奇妙世界

欢迎来到CILMY23的博客 本篇主题为&#xff1a; 穿越Python的迭代之旅&#xff1a;while&#xff0c;for 循环的奇妙世界 个人主页&#xff1a;CILMY23-CSDN博客 系列专栏&#xff1a;Python | C | C语言 | 数据结构与算法 感谢观看&#xff0c;支持的可以给个一键三连&…

spring的redis注解@Cacheable @Cacheput @CacheEvict的condition、unless

概述 redis的注解使用的过程中总会遇到condition和unless这两个属性&#xff0c;而且不同的注解使用注意事项不一样。本人也是错误使用之后详细查询了一下&#xff0c;作了如下的总结。 Cacheale 这个注解的使用和意义这里不多说&#xff0c;可以查看我的其他文档。这里主要说…

【C++】二维数组传参方式

最近刚开始刷剑指offer&#xff0c;刚做到第三题的时候&#xff0c;发现C二维数组的传参方式和C语言略有些不同&#xff0c;所以在这篇博客中&#xff0c;会列出C/C常见的二维数组传参方式。&#xff08;本方式和代码都是基于vs环境所编写&#xff09; 一.C语言二维数组传参方式…

18.读取指定目录下的txt文档时,调用另外一个python文件

1.题目 遍历4K_phone和4K_VR目录下的所有txt文件&#xff0c;并将它们的内容合并到一个名为4k_decoding.txt的文件中。 但是&#xff0c;假设你有一个名为another_script.py的Python文件&#xff0c;你想在合并txt文件之前执行它生成要处理的txt文档。 最后统计完原始的txt文件…

算法与数据结构要点速学——通用 DS/A 流程图

通用 DS/A 流程图 这是一个流程图&#xff0c;可以帮助您确定应该使用哪种数据结构或算法。请注意&#xff0c;此流程图非常笼统&#xff0c;因为不可能涵盖每个场景。 请注意&#xff0c;此流程图仅涵盖 LICC 中教授的方法&#xff0c;因此排除了像 Dijkstra 等更高级的算法。…

eclipse配置SVN和Maven插件

3、 安装SVN插件 使用如下方法安装 Help–Install New Software 注意&#xff1a;目前只能安装1.8.x这个版本的SVN&#xff0c;如果使用高版本的SVN&#xff0c;在安装SVN和maven整合插件的时候就会报错&#xff0c;这应该是插件的bug。 点击Add name: subclipse location…

区块链知识总结——比特币中的密码学原理

比特币中的密码学原理&#xff1a; 比特币的本质&#xff1a;crypto-currency. 比特币用到密码学中的两个功能&#xff1a; 1.哈希函数&#xff08;cryptographic hash function&#xff09; 三个重要性质&#xff1a; &#xff08;1&#xff09;抗碰撞性collison resista…

3 xgboost

目录 1 定义 1.1 模型定义 1.2 损失函数 1.3 化简损失函数 xgboost比赛以及工程利器。目前存在大量有关算法文档。 XGBoost&#xff08;eXtreme Gradient Boosting&#xff09;是一种基于决策树集成的机器学习算法&#xff0c;被广泛应用于分类、回归和排名等任务。XGBoost…

vue快速入门(三十)vue的工程化开发安装配置

步骤很详细&#xff0c;直接上教程 上一篇 新增内容 安装nodejs安装脚手架工具安装vue项目运行项目服务退出项目服务 安装nodejs 没安装的友友可以参考这位大神的博文Node.js下载安装及环境配置教程【超详细】 安装脚手架工具 打开管理员cmd 输入此命令行npm i -g vue/cli …

access多表关联提示:语法错误(操作符丢失)在查询表达式中

在access数据库中执行多表关联时提示了一个错误 select * from Patient a inner join BioMain b on a.BioIDb.BioID inner join BioResult c on b.BioIDc.BioID where len(a.PatientID)>12 and b.AddTime>#2024-04-17 05:53:23# and b.AddTime<#2024-04-17 17:53:23#…

ASP.NET基于Web Mail收发系统设计与开发

摘 要 互联网络技术的不断发展&#xff0c;电子邮件服务已经成为人们基本的信息交互手段&#xff0c;也是网络服务中最早和最基本的服务之一。传统邮件系统大多是基于C/S结构&#xff0c;如Lotus notes、Microsoft Exchange Server等&#xff0c;这些邮件系统占用相对较多的服…

【WEEK8】 【DAY3】【DAY4】总览Spring Boot【中文版】

目录 2024.4.17 Wednesday1.总览1.1.先看个速成课&#xff0c;了解大概1.2.SpringBoot入门1.2.1.什么是Spring1.2.2.Spring是如何简化Java开发的1.2.3.什么是SpringBoot 1.3.第一个Spring Boot项目1.3.1.准备工作1.3.2.创建基础项目说明1.3.2.1.使用官方选配下载 2024.4.18 Thu…
最新文章