NL2SQL进阶系列(1):DB-GPT-Hub、SQLcoder、Text2SQL开源应用实践详解

NL2SQL进阶系列(1):DB-GPT-Hub、SQLcoder、Text2SQL开源应用实践详解

NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL]

NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理

1. MindSQL(库)

MindSQL 是一个 Python RAG(检索增强生成)库,旨在仅使用几行代码来简化用户与其数据库之间的交互。 MindSQL 与 PostgreSQL、MySQL、SQLite 等知名数据库无缝集成,还通过扩展核心类,将其功能扩展到 Snowflake、BigQuery 等主流数据库。 该库利用 GPT-4、Llama 2、Google Gemini 等大型语言模型 (LLM),并支持 ChromaDB 和 Fais 等知识库。

官方链接:https://pypi.org/project/mindsql/

https://github.com/Mindinventory/MindSQL

  • 使用案例
#!pip install mindsql

from mindsql.core import MindSQLCore
from mindsql.databases import Sqlite
from mindsql.llms import GoogleGenAi
from mindsql.vectorstores import ChromaDB

#Add Your Configurations
config = {"api_key": "YOUR-API-KEY"}

#Choose the Vector Store. LLM and DB You Want to Work With And
#Create MindSQLCore Instance With Configured Llm, Vectorstore, And Database
minds = MindSQLCore(
    llm=GoogleGenAi(config=config),
    vectorstore=ChromaDB(),
    database=Sqlite()
)

#Create a Database Connection Using The Specified URL
connection = minds.database.create_connection(url="YOUR_DATABASE_CONNECTION_URL")

#Index All Data Definition Language (DDL) Statements in The Specified Database Into The Vectorstore
minds.index_all_ddls(connection=connection, db_name='NAME_OF_THE_DB')

#Index Question-Sql Pair in Bulk From the Specified Example Path
minds.index(bulk=True, path="your-qsn-sql-example.json")

#Ask a Question to The Database And Visualize The Result
response = minds.ask_db(
    question="YOUR_QUESTION",
    connection=connection,
    visualize=True
)

#Extract And Display The Chart From The Response
chart = response["chart"]
chart.show()

#Close The Connection to Your DB
connection.close()

2.DB-GPT-Hub:利用LLMs实现Text-to-SQL微调

DB-GPT-Hub是一个利用LLMs实现Text-to-SQL解析的实验项目,主要包含数据集收集、数据预处理、模型选择与构建和微调权重等步骤,通过这一系列的处理可以在提高Text-to-SQL能力的同时降低模型训练成本,让更多的开发者参与到Text-to-SQL的准确度提升工作当中,最终实现基于数据库的自动问答能力,让用户可以通过自然语言描述完成复杂数据库的查询操作等工作。

2.1、数据集

本项目案例数据主要以Spider数据集为示例 :

  • Spider: 一个跨域的复杂text2sql数据集,包含了10,181条自然语言问句、分布在200个独立数据库中的5,693条SQL,内容覆盖了138个不同的领域。下载链接

其他数据集:

  • WikiSQL: 一个大型的语义解析数据集,由80,654个自然语句表述和24,241张表格的sql标注构成。WikiSQL中每一个问句的查询范围仅限于同一张表,不包含排序、分组、子查询等复杂操作。
  • CHASE: 一个跨领域多轮交互text2sql中文数据集,包含5459个多轮问题组成的列表,一共17940个<query, SQL>二元组,涉及280个不同领域的数据库。
  • BIRD-SQL:数据集是一个英文的大规模跨领域文本到SQL基准测试,特别关注大型数据库内容。该数据集包含12,751对文本到SQL数据对和95个数据库,总大小为33.4GB,跨越37个职业领域。BIRD-SQL数据集通过探索三个额外的挑战,即处理大规模和混乱的数据库值、外部知识推理和优化SQL执行效率,缩小了文本到SQL研究与实际应用之间的差距。
  • CoSQL:是一个用于构建跨域对话文本到sql系统的语料库。它是Spider和SParC任务的对话版本。CoSQL由30k+回合和10k+带注释的SQL查询组成,这些查询来自Wizard-of-Oz的3k个对话集合,查询了跨越138个领域的200个复杂数据库。每个对话都模拟了一个真实的DB查询场景,其中一个工作人员作为用户探索数据库,一个SQL专家使用SQL检索答案,澄清模棱两可的问题,或者以其他方式通知。
  • 按照NSQL的处理模板,对数据集做简单处理,共得到约20w条训练数据

2.2、基座模型

DB-GPT-HUB目前已经支持的base模型有:

  • CodeLlama
  • Baichuan2
  • LLaMa/LLaMa2
  • Falcon
  • Qwen
  • XVERSE
  • ChatGLM2
  • ChatGLM3
  • internlm
  • Falcon
  • sqlcoder-7b(mistral)
  • sqlcoder2-15b(starcoder)

模型可以基于quantization_bit为4的量化微调(QLoRA)所需的最低硬件资源,可以参考如下:

模型参数GPU RAMCPU RAMDISK
7b6GB3.6GB36.4GB
13b13.4GB5.9GB60.2GB

其中相关参数均设置的为最小,batch_size为1,max_length为512。根据经验,如果计算资源足够,为了效果更好,建议相关长度值设置为1024或者2048。

2.3 快速使用

  • 环境安装
git clone https://github.com/eosphoros-ai/DB-GPT-Hub.git
cd DB-GPT-Hub
conda create -n dbgpt_hub python=3.10 
conda activate dbgpt_hub
pip install poetry
poetry install

2.3.1 数据预处理

DB-GPT-Hub使用的是信息匹配生成法进行数据准备,即结合表信息的 SQL + Repository 生成方式,这种方式结合了数据表信息,能够更好地理解数据表的结构和关系,适用于生成符合需求的 SQL 语句。
从spider数据集链接 下载spider数据集,默认将数据下载解压后,放在目录dbgpt_hub/data下面,即路径为dbgpt_hub/data/spider

数据预处理部分,只需运行如下脚本即可:

##生成train数据 和dev(eval)数据,
poetry run sh dbgpt_hub/scripts/gen_train_eval_data.sh

dbgpt_hub/data/目录你会得到新生成的训练文件example_text2sql_train.json 和测试文件example_text2sql_dev.json ,数据量分别为8659和1034条。 对于后面微调时的数据使用在dbgpt_hub/data/dataset_info.json中将参数file_name值给为训练集的文件名,如example_text2sql_train.json。

生成的json中的数据形如:

    {
        "db_id": "department_management",
        "instruction": "I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n\"\n##Instruction:\ndepartment_management contains tables such as department, head, management. Table department has columns such as Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees. Department_ID is the primary key.\nTable head has columns such as head_ID, name, born_state, age. head_ID is the primary key.\nTable management has columns such as department_ID, head_ID, temporary_acting. department_ID is the primary key.\nThe head_ID of management is the foreign key of head_ID of head.\nThe department_ID of management is the foreign key of Department_ID of department.\n\n",
        "input": "###Input:\nHow many heads of the departments are older than 56 ?\n\n###Response:",
        "output": "SELECT count(*) FROM head WHERE age  >  56",
        "history": []
    }, 

项目的数据处理代码中已经嵌套了chasecosqlsparc的数据处理,可以根据上面链接将数据集下载到data路径后,在dbgpt_hub/configs/config.py中将 SQL_DATA_INFO中对应的代码注释松开即可。

2.3.2 快速开始

首先,用如下命令安装dbgpt-hub

pip install dbgpt-hub

然后,指定参数并用几行代码完成整个Text2SQL fine-tune流程:

from dbgpt_hub.data_process import preprocess_sft_data
from dbgpt_hub.train import start_sft
from dbgpt_hub.predict import start_predict
from dbgpt_hub.eval import start_evaluate

#配置训练和验证集路径和参数
data_folder = "dbgpt_hub/data"
data_info = [
        {
            "data_source": "spider",
            "train_file": ["train_spider.json", "train_others.json"],
            "dev_file": ["dev.json"],
            "tables_file": "tables.json",
            "db_id_name": "db_id",
            "is_multiple_turn": False,
            "train_output": "spider_train.json",
            "dev_output": "spider_dev.json",
        }
]

#配置fine-tune参数
train_args = {
            "model_name_or_path": "codellama/CodeLlama-13b-Instruct-hf",
            "do_train": True,
            "dataset": "example_text2sql_train",
            "max_source_length": 2048,
            "max_target_length": 512,
            "finetuning_type": "lora",
            "lora_target": "q_proj,v_proj",
            "template": "llama2",
            "lora_rank": 64,
            "lora_alpha": 32,
            "output_dir": "dbgpt_hub/output/adapter/CodeLlama-13b-sql-lora",
            "overwrite_cache": True,
            "overwrite_output_dir": True,
            "per_device_train_batch_size": 1,
            "gradient_accumulation_steps": 16,
            "lr_scheduler_type": "cosine_with_restarts",
            "logging_steps": 50,
            "save_steps": 2000,
            "learning_rate": 2e-4,
            "num_train_epochs": 8,
            "plot_loss": True,
            "bf16": True,
}

#配置预测参数
predict_args = {
            "model_name_or_path": "codellama/CodeLlama-13b-Instruct-hf",
            "template": "llama2",
            "finetuning_type": "lora",
            "checkpoint_dir": "dbgpt_hub/output/adapter/CodeLlama-13b-sql-lora",
            "predict_file_path": "dbgpt_hub/data/eval_data/dev_sql.json",
            "predict_out_dir": "dbgpt_hub/output/",
            "predicted_out_filename": "pred_sql.sql",
}

#配置评估参数
evaluate_args =  {
            "input": "./dbgpt_hub/output/pred/pred_sql_dev_skeleton.sql",
            "gold": "./dbgpt_hub/data/eval_data/gold.txt",
            "gold_natsql": "./dbgpt_hub/data/eval_data/gold_natsql2sql.txt",
            "db": "./dbgpt_hub/data/spider/database",
            "table": "./dbgpt_hub/data/eval_data/tables.json",
            "table_natsql": "./dbgpt_hub/data/eval_data/tables_for_natsql2sql.json",
            "etype": "exec",
            "plug_value": True,
            "keep_distict": False,
            "progress_bar_for_each_datapoint": False,
            "natsql": False,
}

#执行整个Fine-tune流程
preprocess_sft_data(
      data_folder = data_folder,
      data_info = data_info
)

start_sft(train_args)
start_predict(predict_args)
start_evaluate(evaluate_args)

2.3.3、模型微调

本项目微调不仅能支持QLoRA和LoRA法,还支持deepseed。 可以运行以下命令来微调模型,默认带着参数--quantization_bit 为QLoRA的微调方式,如果想要转换为lora的微调,只需在脚本中去掉quantization_bit参数即可。
默认QLoRA微调,运行命令:

poetry run sh dbgpt_hub/scripts/train_sft.sh

微调后的模型权重会默认保存到adapter文件夹下面,即dbgpt_hub/output/adapter目录中。
如果使用多卡训练,想要用deepseed ,则将train_sft.sh中默认的内容进行更改,
调整为:

CUDA_VISIBLE_DEVICES=0 python dbgpt_hub/train/sft_train.py \
    --quantization_bit 4 \
    ...

更改为:

deepspeed --num_gpus 2  dbgpt_hub/train/sft_train.py \
    --deepspeed dbgpt_hub/configs/ds_config.json \
    --quantization_bit 4 \
    ...

如果需要指定对应的显卡id而不是默认的前两个如3,4,可以如下

deepspeed --include localhost:3,4  dbgpt_hub/train/sft_train.py \
    --deepspeed dbgpt_hub/configs/ds_config.json \
    --quantization_bit 4 \
    ...

其他省略(…)的部分均保持一致即可。 如果想要更改默认的deepseed配置,进入 dbgpt_hub/configs 目录,在ds_config.json 更改即可,默认为stage2的策略。

脚本中微调时不同模型对应的关键参数lora_target 和 template,如下表:

模型名lora_targettemplate
LLaMA-2q_proj,v_projllama2
CodeLlama-2q_proj,v_projllama2
Baichuan2W_packbaichuan2
Qwenc_attnchatml
sqlcoder-7bq_proj,v_projmistral
sqlcoder2-15bc_attndefault
InternLMq_proj,v_projintern
XVERSEq_proj,v_projxverse
ChatGLM2query_key_valuechatglm2
LLaMAq_proj,v_proj-
BLOOMquery_key_value-
BLOOMZquery_key_value-
BaichuanW_packbaichuan
Falconquery_key_value-

train_sft.sh中其他关键参数含义:

quantization_bit:是否量化,取值为[4或者8]
model_name_or_path: LLM模型的路径
dataset: 取值为训练数据集的配置名字,对应在dbgpt_hub/data/dataset_info.json 中外层key值,如example_text2sql。
max_source_length: 输入模型的文本长度,如果计算资源支持,可以尽能设大,如1024或者2048。
max_target_length: 输出模型的sql内容长度,设置为512一般足够。
output_dir : SFT微调时Peft模块输出的路径,默认设置在dbgpt_hub/output/adapter/路径下 。
per_device_train_batch_size : batch的大小,如果计算资源支持,可以设置为更大,默认为1。
gradient_accumulation_steps : 梯度更新的累计steps值
save_steps : 模型保存的ckpt的steps大小值,默认可以设置为100。
num_train_epochs : 训练数据的epoch数

2.3.4、模型预测

项目目录下./dbgpt_hub/下的output/pred/,此文件路径为关于模型预测结果默认输出的位置(如果没有则建上)。
预测运行命令:

poetry run sh ./dbgpt_hub/scripts/predict_sft.sh

脚本中默认带着参数--quantization_bit 为QLoRA的预测,去掉即为LoRA的预测方式。
其中参数predicted_input_filename 为要预测的数据集文件, --predicted_out_filename 的值为模型预测的结果文件名。默认结果保存在dbgpt_hub/output/pred目录。

2.3.5、模型权重

可以从Huggingface查看社区上传的第二版Peft模块权重huggingface地址 (202310) ,在spider评估集上的执行准确率达到0.789。

  • 模型和微调权重合并
    如果你需要将训练的基础模型和微调的Peft模块的权重合并,导出一个完整的模型。则运行如下模型导出脚本:
poetry run sh ./dbgpt_hub/scripts/export_merge.sh

注意将脚本中的相关参数路径值替换为你项目所对应的路径。

2.3.6、模型评估

对于模型在数据集上的效果评估,默认为在spider数据集上。
运行以下命令来:

poetry run python dbgpt_hub/eval/evaluation.py --plug_value --input  Your_model_pred_file

你可以在这里找到最新的评估和实验结果。
注意: 默认的代码中指向的数据库为从Spider官方网站下载的大小为95M的database,如果你需要使用基于Spider的test-suite中的数据库(大小1.27G),请先下载链接中的数据库到自定义目录,并在上述评估命令中增加参数和值,形如--db Your_download_db_path

2.4 小结

整个过程会分为三个阶段:

  • 阶段一:

    • 搭建基本框架,基于数个大模型打通从数据处理、模型SFT训练、预测输出和评估的整个流程
      现在支持
    • CodeLlama
    • Baichuan2
    • LLaMa/LLaMa2
    • Falcon
    • Qwen
    • XVERSE
    • ChatGLM2
    • ChatGLM3
    • internlm
    • sqlcoder-7b(mistral)
    • sqlcoder2-15b(starcoder)
  • 阶段二:

    • 优化模型效果,支持更多不同模型进行不同方式的微调。
    • prompt优化
    • 放出评估效果,和优化后的还不错的模型,并且给出复现教程(见微信公众号EosphorosAI)
  • 阶段三:

    • 推理速度优化提升
    • 业务场景和中文效果针对性优化提升

3.sqlcoder

官方链接:https://github.com/defog-ai/sqlcoder

Defog组织提出的先进的Text-to-SQL的大模型,表现亮眼,效果优于GPT3.5、wizardcoder和starcoder等,仅次于GPT4。

将每个生成的问题分为6类。该表显示了每个模型正确回答问题的百分比,并按类别进行了细分。

4.modal_finetune_sql

项目基于LLaMa 2 7b模型进行Text-to-SQL微调,有完整的训练、微调、评估流程。

链接:https://github.com/run-llama/modal_finetune_sql

5.LLaMA-Efficient-Tuning

这是一个易于使用的LLM微调框架,支持LLaMA-2、BLOOM、Falcon、Baichuan、Qwen、ChatGLM2等。

链接:https://github.com/hiyouga/LLaMA-Factory/tree/main

  • 多种模型:LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、指令监督微调、奖励模型训练、PPO 训练、DPO 训练和 ORPO 训练。
  • 多种精度:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
  • 先进算法:GaLore、DoRA、LongLoRA、LLaMA Pro、LoRA+、LoftQ 和 Agent 微调。
  • 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
  • 训练方法
方法全参数训练部分参数训练LoRAQLoRA
预训练
指令监督微调
奖励模型训练
PPO 训练
DPO 训练
ORPO 训练
  • 可视化使用教学

https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd-d76c6d0a6594

  • 参考链接

  • Awesome Text2SQL:https://github.com/eosphoros-ai/Awesome-Text2SQL/blob/main/README.zh.md

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/555989.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024华中杯C题平面曲线重建思路

华中杯数学建模思路 光纤传感技术是伴随着光纤及光通信技术发展起来的一种新型传感器技 术。它是以光波为传感信号、光纤为传输载体来感知外界环境中的信号&#xff0c;其基本原理是当外界环境参数发生变化时&#xff0c;会引起光纤传感器中光波参量&#xff08;如波长、相位、…

IP-guard WebServer 权限绕过漏洞复现(QVD-2024-14103)

0x01 免责声明 请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;作者不为此承担任何责任。工具来自网络&#xff0c;安全性自测&#xff0c;如有侵权请联系删…

全球排名前十的搜索引擎,你猜百度排名在第几位?bing稳居二位!

通常情况下&#xff0c;营销人员在争夺其在线业务的流量时会非常关注Google&#xff0c;无论是通过他们的网站&#xff0c;博客文章还是其他形式的内容。考虑到谷歌无疑是最受欢迎的搜索引擎&#xff0c;拥有超过85%的搜索市场份额&#xff0c;这是有道理的。 但这种受欢迎程度…

【Qt】Qt Hello World 程序

文章目录 1、Qt Hello World 程序1.1 使用按钮实现1.1.1 使用可视化方式实现 1.1.2 纯代码方式实现 label创建堆&#xff08;内存泄漏&#xff09;或者栈问题Qt基础类&#xff08;Qstring、Qvector、Qlist&#xff09;乱码问题零散知识 1、Qt Hello World 程序 1.1 使用按钮实…

【代码随想录】【动态规划】day48:打家劫舍

打家劫舍1 def rob(self, nums):""":type nums: List[int]:rtype: int"""# 分为两个情况&#xff0c;偷还是不偷&#xff0c;# dp[i]为考虑到第i个房间时的最大值if len(nums) 0: # 如果没有房屋&#xff0c;返回0return 0if len(nums) 1: #…

QoS流量整形

流量整形是一种带宽技术形式&#xff0c;它延迟某些类型的网络数据包的流动&#xff0c;以确保更高优先级应用程序的网络性能&#xff0c;它主要涉及调整数据传输速率&#xff0c;以确保网络资源以最佳容量得到利用。流量整形的目的是防止网络拥塞并提高网络的整体性能&#xf…

穿越物联网的迷雾:深入理解MQTT协议

目录标题 1、MQTT简介核心特性 2、MQTT的工作原理通信过程 3、MQTT的消息质量&#xff08;QoS&#xff09;4、安全机制5、实践应用环境准备示例项目发布者客户端订阅者客户端 6、最佳实践7、结论8、参考资料 在物联网&#xff08;IoT&#xff09;的海洋中&#xff0c;数据像水流…

【深度学习】Attention、Self-Attention、Multi-Head Attention

一、Attention 在CV领域&#xff0c;注意力机制通常分为通道注意力和空间注意力或者两者结合。 一张图像经backbone得到的特征通常包括多个通道&#xff0c;每个通道是一个像素矩阵&#xff0c;每个通道对任务的贡献不尽相同&#xff0c;单个通道的特征图中每个像素对任务的贡…

Ansible在macOS上的安装部署

一、安装 Ansible&#xff08;使用 Homebrew&#xff09; 安装 Homebrew&#xff08;如果尚未安装&#xff09;&#xff1a; /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"使用 Homebrew 安装 Ansible&#x…

Hive进阶(1)----HDFS写入数据流程(赋图助君理解)

HDFS写入数据流程 1.理论流程描述 HDFS&#xff08;Hadoop分布式文件系统&#xff09;的数据写入流程是一个复杂但高效的过程&#xff0c;可以分为以下8个步骤&#xff1a; 1、client(客户端)发起文件上传请求&#xff1b; 2、通过发送RPC请求与NameNode建立通讯。NameNode…

从100美元到1亿美元,探究传奇交易员GCR的交易心得及其持仓

有史以来最“伟大”的交易员GCR终于回归。2022年&#xff0c;GCR的资金从100美元涨至1亿美元&#xff0c;通过做空LUNA成为有史以来最赚钱的交易员。 GCR又名Giant Cassock Revival&#xff0c;或许是从FTX和Luna崩盘事件中获利最多的人&#xff0c;其净资产达到1亿美元后便“…

lv_micropython for ESP32/S2/S3/C3

由于官方的lv_micropython编译ESP32S3/S2/C3会报错&#xff0c;因为这些芯片的esp-idf底层重写了接口&#xff0c;参照网友提供的方法修改lv_bindings/driver/esp32里的文件&#xff0c;解决编译错误。 问题列举&#xff1a;Issues lvgl/lv_binding_micropython GitHub 一…

视觉信息保真度VIF算法详细介绍

来源 算法核心思想来源该篇论文A VISUAL INFORMATION FIDELITY APPROACH TO VIDEO QUALITY ASSESSMENT;是2005年的一篇高引用文章; 是一种全参考的视频图像评价算法;在奈飞开源的视频质量评价工具vmaf中将其作为一个判断维度,具体关于vmaf介绍可以参考视频质量评价工具vmaf…

安全开发实战(2)---域名反查IP

目录 安全开发专栏 前言 域名与ip的关系 域名反查ip的作用 1.2.1 One 1.2.2 Two 1.2.3 批量监测 ​总结 安全开发专栏 安全开发实战http://t.csdnimg.cn/25N7H 这步是比较关键的一步,一般进行cdn监测后,获取到真实ip地址后,或是域名时,然后进行域名反查IP地址,进行进…

机器学习笔记 - 使用 OpenCV 的结构化森林进行边缘检测

一、简述 边缘检测是计算机视觉领域中一项非常重要的任务。这是许多纯计算机视觉任务(例如轮廓检测)的第一步。即使涉及深度学习,较深层也首先学习识别边缘,然后再学习图像的复杂特征。所以,我们可以说边缘检测在计算机视觉领域非常重要。拥有良好且高效的图像边缘检测算法…

微信小程序实现美食检索功能

1、打开浏览器搜索&#xff1a;腾讯位置服务 2、注册一个账号&#xff0c;有账号的直接登陆就行 3、注册登陆成功后&#xff0c;点击控制台 4、进入控制台后点击我的应用——>创建应用 5、添加key,注意看注释 6、key添加成功后&#xff0c;开始分配额度&#xff08;配额&…

复合机器人在磁钢上下料中的应用及其优势分析

复合机器人是一种集成了移动机器人和工业机器人功能的设备&#xff0c;其独特之处在于拥有“手、脚、眼、脑”的综合能力&#xff0c;从而实现了更高的灵活性和操作效率。在磁钢上下料的应用场景中&#xff0c;复合机器人能够发挥显著的优势。 首先&#xff0c;复合机器人可以根…

【 书生·浦语大模型实战营】作业(五):LMDeploy 量化部署

【 书生浦语大模型实战营】作业&#xff08;五&#xff09;&#xff1a;LMDeploy 量化部署 &#x1f389;AI学习星球推荐&#xff1a; GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系…

vscode绿绿主题setting config

下载插件Green Tree Theme 选greentree ctrl shift p找到setting {"workbench.colorTheme": "Green Tree","editor.fontSize": 16.5, // 字号"workbench.colorCustomizations": {"[Green Tree]": {"activityBarBadge.…

android远程更新下载apk

最近业务有涉及到&#xff0c;奈何是个app代码小白&#xff0c;遂记录一下 一&#xff1a;AndroidManifest.xml文件配置 application标签里面加上 android:networkSecurityConfig"xml/network_config" <!-- app下载更新配置--> <uses-permission andr…