Langchain实战:基于Chain实现Prompt的高级应用

Langchain实战

    • 一. Langchain介绍
    • 二. 项目背景
    • 三. 代码实现
      • 3.1 导入必要的库并调用GPT大模型
      • 3.2 输出解析器(指定输出格式)
      • 3.3 定义Prompt模板
      • 3.4 构造LLMChain并推理
      • 3.5 解析推理结果
      • 3.6 异步调用
    • 四. 参考文献

一. Langchain介绍

LangChain 是一个用于开发由语言模型驱动的应用程序的框架。它使得应用程序能够:

  • 具有上下文感知能力:将语言模型连接到上下文来源(提示指令,少量的示例,需要回应的内容等)。
  • 具有推理能力:依赖语言模型进行推理(根据提供的上下文如何回答,采取什么行动等)。

LangChain 包的主要价值主张是:

  • 组件:用于处理语言模型的可组合工具和集成。无论你是否使用 LangChain 框架的其余部分,组件都是模块化的,易于使用
  • 现成的链:用于完成高级任务的组件的内置组合

现成的链使得开始变得容易。组件使得定制现有链和构建新链变得容易。

LangChain的安装与入门请参考:快速入门指南

二. 项目背景

假设有一串长文本,我们希望利用大模型提取出文本中与指定类型的商品品牌、型号等相关的信息,并通过JSON格式将商品信息输出,如下所示:

文本内容:"我今天买了一台Huawei Mate 60, 请你帮我送到华中科技大学南大门, 手机是蓝色的, 512G"
输出:
```json
{
	"品牌": "Huawei",
	"品类": "手机",
	"属性": {
		"型号": "Mate 60",
		"颜色": "蓝色",
		"存储容量": "512G"
	},
	"商品名称": "Huawei Mate 60 蓝色 512G"
}

三. 代码实现

3.1 导入必要的库并调用GPT大模型

# 导入Langchain相关的库
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.prompts import (
    ChatPromptTemplate,
    PromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate
)
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

OPENAI_API_KEYOPENAI_API_BASE 是两个与 OpenAI API 交互时常用的环境变量,它们各自有不同的用途:

  • OPENAI_API_KEY
    用途:这是一个用于身份验证的密钥,允许你访问 OpenAI 的服务。当你通过 API 发送请求时,需要在请求头中包含这个 API 密钥,以便 OpenAI 能够验证请求者的身份。
    格式:通常是一个由数字和字母组成的字符串,长度固定。

  • OPENAI_API_BASE
    用途:这个环境变量用于指定 OpenAI API 的基础 URL。它决定了你的请求将被发送到哪个服务器。
    默认值:通常情况下,你不需要更改它,因为默认值已经指向了 OpenAI 的生产环境服务器。
    如何使用:如果你需要将请求发送到不同的服务器(如沙盒环境、自定义端点或其他地区特定的服务器),你可以设置这个环境变量。

import os
os.environ["OPENAI_API_KEY"] = "..."
os.environ["OPENAI_API_BASE"] = "..."
# 导入ChatModel
chat = ChatOpenAI(temperature=0)

3.2 输出解析器(指定输出格式)

在Langchain中封装了结构化输出的功能,通过Promt的输出解析器,可以直接将LLM的输出结果转化为指定格式:结构化输出解析器 structured

比如前面提到,我们希望输出为JSON格式,那么:

#定义输出格式
response_schemas = [
    ResponseSchema(name="品牌", description="商品的品牌"),
    ResponseSchema(name="品类", description="商品的品类"),
    ResponseSchema(name="属性", description="商品除品牌、品类外能够提炼的其他属性"),
    ResponseSchema(name="商品名称", description="根据提取的信息输出商品名称"),
]
 
# 初始化解析器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)

format_instructions = output_parser.get_format_instructions()

format_instructions将作为Prompt的一部分输入大模型中

3.3 定义Prompt模板

LangChain 提供了不同类型的 MessagePromptTemplate。最常用的是 AIMessagePromptTemplateSystemMessagePromptTemplateHumanMessagePromptTemplate,分别用于创建 AI 消息、系统消息和人工消息:与聊天相关的提示模板

# 创建SystemMessagePromptTemplate
SystemPrompt = PromptTemplate(
    template="你是一个 {industry} 行业的专家,你对行业内各个品牌的名称和型号了如指掌。",
    input_variables=["industry"]
)
SystemMessagePrompt = SystemMessagePromptTemplate(prompt=SystemPrompt)
# 创建HumanMessagePromptTemplate
HumanPrompt = PromptTemplate(
    template="""
                用户问题:给你一段输入文本,请从里面提炼与{goods}相关的以下信息:
                品牌:商品的品牌
                品类:商品的品类
                属性:商品除品牌、品类外能够提炼的其他属性,以json形式给出
                商品名称:根据提取的信息输出商品描述
                
                <context>
                {ocr_result}
                </context>
                根据<context>里的信息回答用户问题
                输出格式: {format_instructions}

                让我们一步一步分析,给出你分析的过程,并注意以下要点:
                1.只提取和{goods}相关的信息,如果无法提炼返回空json.只输出一个可能性最大的商品信息,输出的json只包含一种商品;
                2:参考{industry}行业内的常见品牌,并将文本中识别错误的品牌信息,根据字体之间的相似性与已有品牌进行对应;
                3.一般来说商品的品牌会在商品描述的前面,并且他们距离不会太远,如果提取到多个品牌信息,则考虑品牌和商品描述之间的距离;
                4.你需要判断提取到的品牌是否属于{industry}行业,若提取到的品牌明显不属于{industry}行业,则忽略该品牌信息;
                5.保证输出json的合法性,输出你分析的过程.
            """,
    input_variables=["goods","ocr_result","format_instructions","industry"]
)
HumanMessagePrompt = HumanMessagePromptTemplate(prompt=HumanPrompt)

# 组合多个Prompt
chat_template = ChatPromptTemplate.from_messages([SystemMessagePrompt,HumanMessagePrompt])

在上面的Prompt中,我们需要外部导入四个参数,分别是:

  • goods:商品类别,比如手机,电脑等。
  • ocr_result:希望大模型提取信息的文本。
  • format_instructions:3.2中定义的输出解析器。
  • industry:该商品所处的行业,比如3C,家用电器等。

关于Prompt如何设计,请参考:Prompt之美:如何设计提示词让大模型变“聪明”

3.4 构造LLMChain并推理

链允许我们将多个组件组合在一起,创建一个单一的、一致的应用程序。例如,我们可以创建一个链,该链接接受用户输入,使用 PromptTemplate 对其进行格式化,然后将格式化后的响应传递给 LLM。我们可以通过将多个链组合在一起,或者通过将链与其他组件组合在一起,来构建更复杂的链:快速开始: 使用LLMChain

chain=LLMChain(llm=chat, prompt=chat_template)

接下来就可以推理了:

ocr = '我今天买了一台Huawei Mate 60, 请你帮我送到华中科技大学南大门, 手机是蓝色的, 512G'
res = chain.run(industry="电子产品",ocr_result=ocr,goods="手机",format_instructions=format_instructions)
print(res)
#输出:
1. 首先从文本中提取可能与手机相关的信息:
   - 品牌:Huawei
   - 商品名称:Mate 60
   - 属性:蓝色、512G

2. 根据电子产品行业内的常见品牌,确认Huawei属于电子产品行业的品牌,无需修正。

3. 根据文本中的描述,品牌信息在商品描述前面,且距离不远,因此可以确定Huawei是商品的品牌。

4. 综合以上信息,得出提取的手机相关信息如下:

```json
{
	"品牌": "Huawei",
	"品类": "手机",
	"属性": "蓝色, 512G",
	"商品名称": "Huawei Mate 60"
}

3.5 解析推理结果

在得到输出结果后,我们希望解析输出的字符串中的JSON信息,从而提取我们想要的品牌、品类相关信息:

output = output_parser.parse(res)
print(output)
#输出
{'品牌': 'Huawei', '品类': '手机', '属性': '蓝色, 512G', '商品名称': 'Huawei Mate 60'}

解析出来的信息为字典格式,然后就可以从中提取我们想要的信息。

3.6 异步调用

上文展示了如何推理一条文本信息,当我们有大量的文本信息时,采用串行执行的方式将会非常耗时,因此考虑能不能采用并行执行的方式提高推理速度。Langchain支持通过利用asyncio库为代理提供异步支持:
如何使用异步API进行代理
Langchain(五)进阶之异步调用

import time,sys
import asyncio #异步调用

#测试
async def async_function():
    print("Hello, async!")
    sys.stdout.flush()  # 刷新标准输出流

await async_function()

假设我们有如下的五条文本信息:

ocr_results = [
'我今天买了一台Huawei Mate 60, 请你帮我送到华中科技大学南大门, 手机是蓝色的, 512G',
'这款红米Note 13 Pro手机现在在京东有优惠活动,原价1399元的商品,通过领取满1000元减100元、满99元减30元的优惠券后,实付价格低至1262.01元。如果购买京东PLUS会员,还可以享受立减6.99元的优惠。这款手机采用了6.67英寸超细四窄边直屏,搭载了Pro+同款金刚骨骼架构和第二代1.5K高光护眼屏。',
'2023 年 10 月 31 日,苹果发布了全新 M3 系列芯片(M3、M3 Pro、M3 Max),首次采用 3nm 工艺,同时发布了搭载 M3 系列芯片的全新 MacBook Pro 14/16 英寸,以及 24 英寸的 iMac。',
'据外媒 FujiFrmors 报道,富士 X-T50 相机有望于 5 月 16 日发布,这款相机将引入机身五轴防抖(IBIS)功能,同时还将搭载 X-T5 同款 X-Trans V CMOS 传感器,内置 1 个 SD 卡插槽。',
'联想旗下新款ThinkBook 16+笔记本电脑现已上架,其中集成显卡版本售价为7699元,配备RTX 4060独立显卡的版本售价为9999元。'
]

首先不采用异步调用串联推理:

result = []
s = time.perf_counter()
for ocr in ocr_results:
    res = chain1.run(industry="电子产品",ocr_result=ocr,goods="电子产品",format_instructions=format_instructions)
    output = output_parser.parse(res)
    result.append(output['商品名称'])
print(result)
elapsed = time.perf_counter() - s
print("\033[1m" + f"Serial executed in {elapsed:0.2f} seconds." + "\033[0m")

输出:

['Huawei Mate 60', 
'红米Note 13 Pro手机', 
'苹果 MacBook Pro 16 英寸(搭载 M3 系列芯片)', 
'富士 X-T50 相机', 
'联想ThinkBook 16+ 笔记本电脑']
Serial executed in 18.15 seconds.

采用异步调用并联推理:

async def async_generate(ocr_result):
    res = await chain.arun(industry='电子产品',ocr_result=ocr_result,goods='电子产品',format_instructions=format_instructions)
    output = output_parser.parse(res)
    return output['商品名称']

async def generate_concurrently(data):
    tasks = [async_generate(ocr) for ocr in data]
    return await asyncio.gather(*tasks) ####异步调用

s = time.perf_counter()
result=await generate_concurrently(ocr_results)
print(result)
elapsed = time.perf_counter() - s
print("\033[1m" + f"Concurrent executed in {elapsed:0.2f} seconds." + "\033[0m")

输出:

['Huawei Mate 60', 
'红米Note 13 Pro手机', 
'Apple MacBook Pro with M3 Series Chip, 14/16-inch', 
'富士 X-T50 相机', 
'ThinkBook 16+笔记本电脑']
Concurrent executed in 7.21 seconds.

可以看到二者输出的商品描述几乎一致,但是推理时间从18.15s减少到了7.21s,速度快了一倍还要多。

四. 参考文献

LangChain 中文网,500页码中文文档教程
LangChain 中文文档 v0.1.7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/577830.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式Linux学习——Linux常用命令(上)

Linux命令行介绍 Linux Shell 简介 Shell 的意思是“外壳”&#xff0c;在 Linux 中它是一个程序&#xff0c;比如/bin/sh、/bin/bash 等。它负责接收用户的输入&#xff0c;根据用户的输入找到其他程序并运行。比如我们输入“ ls”并回车时&#xff0c; shell 程序找到“ ls…

TinyML之Hello world----基于Arduino Nano 33 BLE Sense Rev2的呼吸灯

早期版本的Hello World 这应该是一个逼格比较高的呼吸灯了&#xff0c;用ML来实现呼吸灯功能&#xff0c;之前已经有大佬发过类似的文章&#xff1a;https://blog.csdn.net/weixin_45116099/article/details/126310816 当前版本的Hello World 这是一个ML的入门例程&#xff…

黑马程序员C++学习总结【进阶篇】

本阶段主要针对C泛型编程和STL技术做详细讲解&#xff0c;探讨C更深层的使用 黑马程序员C学习总结【基础篇】 黑马程序员C学习总结【核心篇】 黑马程序员C学习总结【进阶篇】 黑马程序员C学习总结【进阶篇】 一、模板1.函数模板&#xff08;1&#xff09;函数模板2种使用方式&a…

重学java 25.面向对象 权限修饰符、final关键字、代码块

别让平淡生活&#xff0c;耗尽你所有的向往 —— 24.4.27 重点概述 01.知道final修饰成员之后特点 02.会使用静态代码块以及知道静态代码块的使用场景 03.会使用匿名内部类 一、权限修饰符 1.概述 在Java中提供了四种访问权限&#xff0c;使用不同的访问权限修饰符修饰时&#…

为什么 Facebook 不使用 Git?

在编程的世界里&#xff0c;Git 就像水一样常见&#xff0c;以至于我们认为它是创建和管理代码更改的唯一可行的工具。 前 Facebook 员工&#xff0c;2024 年 首先&#xff0c;我为什么关心&#xff1f; 我致力于构建 Graphite&#xff0c;它从根本上受到 Facebook 内部工具的…

第十五届蓝桥杯省赛第二场C/C++B组E题【遗迹】题解

解题思路 错解 贪心&#xff1a;每次都移动至当前最近的对应方块上。 反例&#xff1a; s s s abxac t t t abac 贪心结果&#xff08;下标&#xff09; 0 → 1 → 0 → 4 0 \rightarrow 1 \rightarrow 0 \rightarrow 4 0→1→0→4&#xff0c;答案为 5 5 5。 正确结…

【MRI重建】基于径向采样的GRASP重建实现(matlab)

关于 对比增强MRI和弥散MRI成像,对于时间分辨率要求都比较高,为了捕获高时间空间分辨率,这里使用GRASP方法,重建radial径向采样的MR数据。使用的稀疏正则项为 temporal total variation。 相关文章 https://onlinelibrary.wiley.com/doi/10.1002/mrm.24980 https://onl…

前端学习笔记3

列表、表格与表单​ 列表就是信息资源的一种展示形式。它可以使信息结构化和条理化,并以列表的样式显示出来,以便浏览者能更快捷地获得相应的信息。 3.0 代码访问地址 https://gitee.com/qiangge95243611/java118/tree/master/web/day03 3.1 列表 ​ 列表大致可以分为3类…

mac资源库的东西可以删除吗?提升Mac运行速度秘籍 Mac实用软件

很多小伙伴在使用mac电脑处理工作的时候&#xff0c;就会很疑惑&#xff0c;电脑的运行速度怎么越来越慢&#xff0c;就想着通过删除mac资源库的东西&#xff0c;那么mac资源库的东西可以删除吗&#xff1f;删除了会不会造成电脑故障呢&#xff1f; 首先&#xff0c;mac资源库…

沉浸式推理乐趣:体验线上剧本杀小程序的魅力

在这个信息爆炸的时代&#xff0c;人们的娱乐方式也在不断地推陈出新。其中&#xff0c;线上剧本杀小程序以其独特的沉浸式推理乐趣&#xff0c;成为了许多人的新宠。它不仅让我们在闲暇之余享受到了推理的快乐&#xff0c;更让我们在虚拟的世界里感受到了人性的复杂与多彩。 线…

【hackmyvm】 Quick2靶机

渗透流程 渗透开始1.IP地址 获取2.端口扫描3.任意文件读取4.扫描目录5.总结信息6.漏洞扫描7.php_filter_chain_generator.py使用8.提权 渗透开始 1.IP地址 获取 ┌─[✗]─[userparrot]─[~] └──╼ $fping -ag 192.168.9.0/24 2>/dev/null 192.168.9.124 本机 192.1…

base64格式图片直接显示

<img :src""/>

阿斯达年代记游戏下载教程 阿斯达年代记下载教程

《阿斯达年代记&#xff1a;三强争霸》作为一款气势恢宏的MMORPG大作&#xff0c;是Netmarble与STUDIO DRAGON强强联合的巅峰创作&#xff0c;定于4月24日迎来全球玩家热切期待的公测。游戏剧情围绕阿斯达大陆的王权争夺战展开&#xff0c;三大派系——阿斯达联邦、亚高联盟及边…

“PowerInfer:消费级GPU上的高效大语言模型推理引擎“

PowerInfer是由上海交通大学IPADS实验室开发的一个高效大语言模型&#xff08;LLM&#xff09;推理引擎&#xff0c;专为个人电脑&#xff08;PC&#xff09;上的消费者级GPU设计。它通过利用LLM推理中的高局部性&#xff0c;实现了快速且资源消耗低的模型推理&#xff0c;这一…

windows如何安装MySQL(详)

MySQL在Windows上的安装和配置 官网&#xff1a;www.mysql.com 下载地址&#xff1a;MySQL :: Download MySQL Community Server (Archived Versions) window系统 安装包&#xff08;Windows (x86, 64-bit), MSI Installer&#xff09; 压缩包&#xff08;Windows (x86, 64…

Java后端利用百度地图全球逆地理编码,获取地址

声明&#xff1a;本人是在实习项目的时候遇到的问题 一.使用Api分为四步骤全球逆地理编码 rgc 反geo检索 | 百度地图API SDK 步骤1,2自行完成 接下来去获取AK 二.申请AK 登录百度账号 点击创建应用&#xff0c;选择自己想用的服务&#xff0c;我只单选了逆地理编码&#xff…

目标检测的mAP、PR指标含义

基本概念 什么是一个任务的度量标准。对于目标检测任务来说&#xff0c;它的首要目标是确定目标的位置并判别出目标类别。这里已医学图像为例&#xff0c;我们需要计算出血液红细胞&#xff08;RBC&#xff09;、白细胞&#xff08;WBC&#xff09;和血小板的数量。为了实现这一…

表格的单元格合并和表头的合并——vxe-table

vxe-table的官网&#xff1a;https://vxetable.cn/#/table/advanced/mergeCell在你的项目中下载安装完成后&#xff0c;先在main.js文件中引入&#xff1a; import VXETable from vxe-table import vxe-table/lib/style.css Vue.use(VXETable)一、单元格合并 效果图&#xff…

时间序列预测:基于PyTorch框架的循环神经网络(RNN)实现销量预测

之前随手一写&#xff0c;没想到做预测的同学还挺多&#xff0c;但是之前那个效果并不好&#xff0c;于是在之前的基础上重新修改完善&#xff0c;到了现在这一步才感觉预测算是初步能应用。 上文地址&#xff1a;LSTM模型预测时间序列&#xff1a;根据历史销量数据预测商品未…

开源代码分享(24)-考虑柔性负荷的综合能源系统低碳经济优化调度

参考文献&#xff1a; [1]薛开阳,楚瀛,凌梓,等.考虑柔性负荷的综合能源系统低碳经济优化调度[J].可再生能源, 2019, 37(08): 1206-1213. [2]刘蓉晖,李子林,杨秀,等.考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J].太阳能学报, 2019, 40(10):2842-2850. 1.基本原理 基…