线性代数(五) 线性空间

前言

《线性代数(三) 线性方程组&向量空间》我通过解线性方程组的方式去理解线性空间。此章从另一个角度去理解

空间是什么

大家较熟悉的:平面直角坐标系是最常见的二维空间
在这里插入图片描述
空间由无穷多个坐标点组成
在这里插入图片描述
每个坐标点就是一个向量
在这里插入图片描述

  • 反过来,也可说:2维空间,是由无穷多个2维向量构成
  • 同样的,在3维空间中,每个3维坐标点就是一个3维向量
  • 那么同理:3维空间中有无穷多个3维向量,或3维空间由无穷多个3维向量构成

空间中所有向量,都可被表示成 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},...,\vec{e_{n}} e1 ,e2 ,...,en 的线性组合,若有一向量记为: a ⃗ \vec{a} a
a ⃗ = k 1 ⋅ e 1 ⃗ + k 2 ⋅ e 2 ⃗ + . . . + k n ⋅ e n ⃗ , k 1 , k 2 , . . . , k n 有解即可 \vec{a}=k_{1}·\vec{e_{1}}+k_{2}·\vec{e_{2}}+...+k_{n}·\vec{e_{n}} , k_{1},k_{2},...,k_{n}有解即可 a =k1e1 +k2e2 +...+knen k1,k2,...,kn有解即可
则称:这些向量 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},...,\vec{e_{n}} e1 ,e2 ,...,en 为这个空间基

线性空间定义及性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

向量相加

在这里插入图片描述
[ x 1 y 1 ] + [ x 2 y 2 ] = [ x 1 + x 2 y 1 + y 2 ] = [ 2 + 3 4 + 1 ] \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1+ y_2 \end{bmatrix} = \begin{bmatrix} 2 + 3 \\ 4+ 1 \end{bmatrix} [x1y1]+[x2y2]=[x1+x2y1+y2]=[2+34+1]

数与向量乘法

在这里插入图片描述
[ x y ] ∗ 2 = [ 2 x 2 y ] \begin{bmatrix} x \\ y \end{bmatrix} * 2 = \begin{bmatrix} 2x \\ 2y \end{bmatrix} [xy]2=[2x2y]

维数,坐标和基

在这里插入图片描述
这里出现了一个线性无关的概念,这里线性无关的概念和向量空间中的线性无关差不多,但向量的范围变广了。

在这里插入图片描述

  1. n维线性空间V的基不是唯一的。V中的任意n个线性无关向量都是V的一组基
  2. 向量 a ⃗ \vec{a} a 的坐标 ( a 1 , a 2 , . . . a n ) (a_1,a_2,...a_n) (a1,a2,...an) ( ε 1 , ε 2 , . . . ε n ) (\varepsilon_1,\varepsilon_2,...\varepsilon_n) (ε1,ε2,...εn)基下,是唯一且确定的
要怎么确定线性空间的维数与基

在这里插入图片描述

欧几里得空间

欧几里得空间是空间中的一种类型,是一种特殊的集合。欧几里得集合中的元素:有序实数元组

例:(2,3)(2,4)(3,4)(3,5)为有序实数2元组

  • 有序是指:如(2,3)和(3,2)是两个不同的元素
  • 也就是:每个元素内的实数是讲顺序的
  • 实数是指:每个元素内的数字都∈R
  • 元组是指:每个元素有有序几个数字构成
  • 如:2个数字构成=2元组,n个数字构成=n元组

欧几里得集合=有序实数元组=n维坐标点的集合
所以,欧几里得空间就是我们从小到大进场使用的那个空间

欧几里得空间符合空间的8大定理

子空间

子空间,是整个空间的一部分。但它也是空间,必须满足向量空间的定义。
在这里插入图片描述

子空间的交集

在这里插入图片描述

子空间的和

子空间的 V 1 , V 2 V_1,V_2 V1,V2的并集,并不是简单的元素相加,造成“子空间的并集不属于子空间”。
在这里插入图片描述
所以定义子空间的和
在这里插入图片描述

子空间的直和

在这里插入图片描述
子空间直和是特殊的和。基要求各子空间互相独立。

可以把整个线性空间看成一个大蛋糕。

  • 直和分解就是把蛋糕切成小块的,每一小块蛋糕都是一个子空间,所有小蛋糕之间没有交集,且它们能拼成整个蛋糕。
  • 子空间的和就是分蛋糕的时候没切好,小蛋糕拼不成整个蛋糕(子空间之间的交集非空).

内积空间

在之前的内容中,我们抽象的介绍了向量,矩阵以及线性空间线性变换等。但是在几何中,向量还有向量的模,向量的内积运算等。为了引入向量的模,向量的内积等运算,我们引入了“内积定义”。即内积空间=线性空间+内积定义。
在这里插入图片描述
在这里插入图片描述

向量的夹角

在这里插入图片描述
cos ⁡ θ = cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) = x 1 x 1 2 + y 1 2 ∗ x 2 x 2 2 + y 2 2 + y 1 x 1 2 + y 1 2 ∗ y 2 x 2 2 + y 2 2 \cos\theta = \cos(\alpha-\beta) =\cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)=\cfrac{x_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{x_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} + \cfrac{y_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} cosθ=cos(αβ)=cos(α)cos(β)+sin(α)sin(β)=x12+y12 x1x22+y22 x2+x12+y12 y1x22+y22 y2
cos ⁡ θ = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 = a ⃗ ∗ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos\theta = \cfrac{x_1x_2+y_1y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1}}\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2}}} = \cfrac{\vec{a} *\vec{b}}{|\vec{a} ||\vec{b}|} cosθ=x12+y12 x22+y22 x1x2+y1y2=a ∣∣b a b

上述的a,b向量,只是在2维坐标系中,如果将坐标系转为n维度,即向量a为(x1,x2,x3…xn)向量b为(y1,y2,y3…yn)
cos ⁡ θ = ∑ i = 1 n ( x i ∗ y i ) ∑ i = 1 n x i 2 ∑ i = 1 n y i 2 = [ a , b ] [ a , a ] [ b , b ] \cos\theta = \cfrac{\sum_{i=1}^n(x_i*y_i)}{\sqrt{\sum_{i=1}^n\gdef\bar#1{#1^2} \bar{x_i}}\sqrt{\sum_{i=1}^n\gdef\bar#1{#1^2} \bar{y_i}}}=\cfrac{[a,b]}{\sqrt{[a,a]}\sqrt{[b,b]}} cosθ=i=1nxi2 i=1nyi2 i=1n(xiyi)=[a,a] [b,b] [a,b]

两个向量的夹角 θ \theta θ=90°,即两个向量正交.

两个向量相互正交,把这2个向量合为一组向量,就叫正交向量组

在这里插入图片描述

正交基

在这里插入图片描述
如果 ∣ e n ∣ = 1 |e_n|=1 en=1,则称为标准正交基

施密特(Schmidt)求解正交基

通过简单的投影方式,可以找到一基的正交基
在这里插入图片描述
已知一组基{KaTeX parse error: Expected 'EOF', got '}' at position 18: …lpha_1,\alpha_2}̲求其正交基组

  1. β 1 = α 1 \beta_1=\alpha_1 β1=α1
  2. β 1 \beta_1 β1的上的单位基为 β 1 [ β 1 , β 1 ] \cfrac{\beta_1}{\sqrt{[\beta_1,\beta_1]}} [β1,β1] β1
  3. 计算 α 1 \alpha_1 α1 β 1 \beta_1 β1上的投影
  4. 计算投影长度, [ α 2 , β 1 ] [ α 2 , α 2 ] [ β 1 , β 1 ] ∗ [ α 2 , α 2 ] \cfrac{[\alpha_2,\beta_1]}{\sqrt{[\alpha_2,\alpha_2]}\sqrt{[\beta_1,\beta_1]}} *\sqrt{[\alpha_2,\alpha_2]} [α2,α2] [β1,β1] [α2,β1][α2,α2]
  5. 投影为长度* β 1 \beta_1 β1的上的单位基 [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 [β1,β1][α2,β1]β1
  6. 得正交基为 α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 - \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2[β1,β1][α2,β1]β1
  7. 正交基组为{ α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 , [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 - \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1,\cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2[β1,β1][α2,β1]β1,[β1,β1][α2,β1]β1}

如果是三维的话
在这里插入图片描述

正交补

定义: 设 U U U V V V的子空间,则 U ⊥ = { v ∈ V : ∀ u ∈ U < v , u > = 0 } U^\perp =\{v\in V : \forall u\in U \left< v,u\right> =0 \} U={vV:uUv,u=0}称之为 U U U的正交补. ∀ u \forall u u表示集合中所有u的意思

  1. U ⊥ U^\perp U V V V的子空间;
  2. V ⊥ = { 0 } V^\perp=\{0\} V={0} { 0 } ⊥ = V \{0\}^\perp=V {0}=V
  3. U ⊥ ∩ U = { 0 } U^\perp \cap U = \{0\} UU={0};
  4. 如果 U , W U,W U,W都是 V V V的子集,且 U ⊆ W U\sube W UW ,则 W ⊥ ⊆ U ⊥ W^\perp \sube U^\perp WU

定理: 有限维子空间的正交分解: V = U ⊕ U ⊥ V= U \oplus U^\perp V=UU

  1. ( U ⊥ ) ⊥ = U (U^\perp)^\perp=U (U)=U
  2. dim ⁡ V = dim ⁡ U + dim ⁡ U ⊥ \dim V = \dim U + \dim U^\perp dimV=dimU+dimU

如何求解正交补的基?

  1. 假设 d i m V = 3 , d i m U = 2 且基组为 [ { 1 , 0 , 0 } , { 0 , 1 , 0 } ] dim V = 3 , dim U = 2 且基组为[\{1,0,0\},\{0,1,0\}] dimV=3,dimU=2且基组为[{1,0,0},{0,1,0}]
  2. 得矩阵 A = [ 1 0 0 0 1 0 0 0 0 ] A=\begin{bmatrix} 1 &0&0 \\ 0&1&0 \\ 0&0&0 \end{bmatrix} A= 100010000
  3. 假设 U ⊥ U^\perp U的基组 x ⃗ = [ x y z ] \vec{x}=\begin{bmatrix} x\\ y\\ z \end{bmatrix} x = xyz
  4. A x = 0 Ax=0 Ax=0齐次方程组,你通解为{0,0,1}

正交补的基就是方程组的解,解数=dim V - R(A)

主要参考

《欧几里得空间是向量空间》
《生成空间是什么》
《子空间的交与和》
《3.10子空间的运算》
《正交基与标准正交基》
《如何理解施密特(Schmidt)正交化》
《正交补 (orthogonal complements)》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/94608.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【附安装包】CAD2024(建筑版)安装教程

软件下载 软件&#xff1a;CAD建筑版本&#xff1a;2023语言&#xff1a;简体中文大小&#xff1a;4.52G安装环境&#xff1a;Win11/Win10硬件要求&#xff1a;CPU2.5GHz 内存8G(或更高&#xff09;下载通道①百度网盘丨64位下载链接&#xff1a;https://pan.baidu.com/s/1cHe…

万级数据优化EasyExcel+mybatis流式查询导出封装

文章目录 前言.万级数据优化一. 直接上流式查询封装工具代码二. 传统分页导出查询三. 流式查询概念游标查询 前言.万级数据优化 我们不妨先给大家讲一个概念&#xff0c;利用此概念我们正好给大家介绍一个数据库优化的小技巧&#xff1a; 需求如下&#xff1a;将一个地市表的数…

CSS中如何实现文字阴影效果(text-shadow)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 实现思路⭐ 示例⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前…

视频汇聚/视频云存储/视频监控管理平台EasyCVR安全检查的相关问题及解决方法

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

解读GIS软件:从ArcGIS到山海鲸可视化的全方位介绍

在现代社会&#xff0c;地理信息系统&#xff08;GIS&#xff09;的应用已经渗透到了各个领域&#xff0c;为我们提供了丰富的地理数据分析和可视化工具。下面介绍几款常见的GIS工具软件&#xff0c;一起来了解它们的特点和优势。 1. ArcGIS: ArcGIS由Esri公司开发&#xff0c;…

php环境搭建步骤(与资源配套使用版)

1.将phpEnv.zip下载到D盘下 2.解压到当前文件夹 3.找到Apache24下的bin目录&#xff0c;执行cmd操作&#xff0c;回车。 4.在cmd中执行代码 Httpd -k install -n “Apache24” 4.使用winR键打开运行&#xff0c;输入services.msc &#xff0c;回车&#xff0c;进入服务 …

ipad有必要用手写笔吗?开学季实惠的电容笔推荐

iPad平板的机型经过了一次又一次的升级&#xff0c;增加了更多的功能&#xff0c;如今已有了与笔记本电脑匹敌的能力。而到了如今&#xff0c;科技的发展&#xff0c;iPad也从一个娱乐工具&#xff0c;变成了一个集学习、画画、办公于一体的强大工具。为了提高生产效率&#xf…

PHP教学资源管理系统Dreamweaver开发mysql数据库web结构php编程计算机网页

一、源码特点 PHP 教学资源管理系统是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 源码 https://download.csdn.net/download/qq_41221322/88260480 论文 https://downl…

入海排污口水质自动监测系统,助力把好入河入海“闸门”

随着经济社会的不断发展&#xff0c;污水的排放强度不断加大&#xff0c;大量的污水排入河流、湖泊和海洋中&#xff0c;造成了水体污染&#xff0c;严重影响着我国的用水安全、公众健康、经济发展与社会稳定。入河入海排污口是污染物进入河流和海洋的最后关口&#xff0c;也是…

im6ull-uboot(2021.07)移植(一)

文章目录 声明1 获取源码1.1 从u-boot官网获取1.2 从芯片厂商获取1.3 从开发板厂商获取 2 修改顶层Makefile3 xxx_defconfig配置文件3.1 拷贝生成自己的配置文件3.2 修改defconfig文件3.2.1 查看defconfig文件3.2.2 修改defconfig文件 3.3 添加其他配置文件3.3.1 添加配置头文件…

计算机视觉与人工智能在医美人脸皮肤诊断方面的应用

一、人脸皮肤诊断方法 近年来&#xff0c;随着计算机技术和人工智能的不断发展&#xff0c;中医领域开始逐渐探索利用这些先进技术来辅助面诊和诊断。在皮肤望诊方面&#xff0c;也出现了一些现代研究&#xff0c;尝试通过图像分析技术和人工智能算法来客观化地获取皮肤相关的…

微软 Visual Studio 现已内置 Markdown 编辑器,可直接修改预览 .md 文件

Visual Studio Code V1.66.0 中文版 大小&#xff1a;75.30 MB类别&#xff1a;文字处理 本地下载 Markdown 是一种轻量级标记语言&#xff0c;当开发者想要格式化代码但又不想牺牲易读性时&#xff0c;Markdown 是一个很好的解决方案&#xff0c;比如 GitHub 就使用 Markdo…

7个用于机器学习和数据科学的基本 Python 库

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建3D应用场景 这篇文章针对的是刚开始使用Python进行AI的人&#xff0c;以及那些有经验的人&#xff0c;但对下一步要学习什么有疑问的人。我们将不时花点时间向初学者介绍基本术语和概念。如果您已经熟悉它们&#xff0c;我们鼓…

windows服务器查看网络带宽

windows服务器查看网络带宽&#xff1f; 鼠标右键单击win标志&#xff0c;进入计算机管理 另外一个方法&#xff1a;

【golang】15、cobra cli 命令行库

Cobra 是 golang 最流行的命令行库&#xff0c;文档见 一、脚手架 mkdir pt && cd pt && go mod init cobra-cli init # 在项目下运行即可生成脚手架# tree . ├── LICENSE ├── cmd # 生成了cmd目录 │ └── root.go # 生成了root.go, 其中定义了ro…

他们朝我扔泥巴(scratch)

前言 纯~~~属~~~虚~~~构~~~&#xff08;同学看完短视频要我做&#xff0c;蟹蟹你&#xff09; 用scratch做的&#xff0c;幼稚得嘞(&#xffe3;_&#xffe3;|||)呵呵&#xff08;强颜欢笑&#xff09; 完成视频 视频试了好久&#xff0c;就是传不上来&#xff0c;私信我加我…

Flutter问题记录 - Unable to find bundled Java version

新版本的Android Studio真的移除了JRE&#xff0c;jre目录找不到&#xff0c;怪不得报错了&#xff0c;不过多了一个jbr目录&#xff0c;找了个以前的Android Studio版本对比 搜了一下jbr&#xff08;JetBrains Runtime&#xff09;&#xff0c;原来IDEA老早就开始用了&#xf…

一文速学-让神经网络不再神秘,一天速学神经网络基础(一)

前言 思索了很久到底要不要出深度学习内容&#xff0c;毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新&#xff0c;很多坑都没有填满&#xff0c;而且现在深度学习的文章和学习课程都十分的多&#xff0c;我考虑了很久决定还是得出神经网络系列文章&#xff0c;…

购买腾讯云服务器搭建网站全流程_新手建站

使用腾讯云服务器搭建网站全流程&#xff0c;包括轻量应用服务器和云服务器CVM建站教程&#xff0c;轻量可以使用应用镜像一键建站&#xff0c;云服务器CVM可以通过安装宝塔面板的方式来搭建网站&#xff0c;腾讯云服务器网分享使用腾讯云服务器建站教程&#xff0c;新手站长搭…

SpringMVC 第二天

第 1 章 ModelAttribute 和 SessionAttribute[ 应 用 ] 1.1ModelAttribute 1.1.1 使用说明 作用&#xff1a; 该注解是 SpringMVC4.3 版本以后新加入的。它可以用于修饰方法和参数。 出现在方法上&#xff0c;表示当前方法会在控制器的方法执行之前&#xff0c;先执行…